首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a sensitive voltammetric determination of terbutaline (TER) on a platform based on carbon nanotubes (CNTs) and europium oxide nanoparticles (Eu2O3NPs) coated glassy carbon electrodes (GCEs). An ultrasonic bath was performed for the preparation of composite material. The material was characterized by energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction method (XRD) and scanning electron microscopy (SEM). The Eu2O3NPs/CNTs/GCE system was assessed for the oxidation of terbutaline (TER). A broad oxidation peak was appeared at 0.71 V using a bare GCE. However, the voltammetry of TER has been improved at a GCE coated with CNTs and a well‐defined anodic peak exhibited at 0.61 V. Furthermore, the nanoparticles of Eu2O3 and CNTs coated GCE has greatly improved the electrochemical behaviour of TER and a sharp peak was appeared at 0.59 V. Cyclic voltammetry at Eu2O3NPs/CNTs/GCE also reveals a high catalytic effect for the oxidation of TER with an oxidation peak that is distinctly enhanced compared to GCE and CNTs/GCE. Eu2O3 nanoparticles were utilized to enhance the surface area of GCE and then improve the sensitivity of the procedure. The response of TER was linear over a concentration range of 2.0×10?8 M ?9.5×10?6 M with an LOD of 3.7×10?9 M. Square wave voltammetric analysis of tablets by Eu2O3NPs/CNTs/GCE yielded a recovery of 99.2 % with an RSD% of 3.2. The modified electrode (EuO2NPs/CNTs/GCE) provides accuracy and precision to the analysis of samples.  相似文献   

2.
《Electroanalysis》2017,29(12):2698-2707
A cholesterol biosensor based on cholesterol oxidase‐poly(diallyldimethylammonium chloride)‐carbon nanotubes‐nickel ferrite nanoparticles (ChOx‐PDDA‐CNTs‐NiFe2O4NPs) solution is easily fabricated by using a single dropping step on a glassy carbon electrode (GCE) surface. This technique is an alternative way to reduce complexity, cost and time to produce the biosensor. The uniformly dispersed materials on the electrode surface enhance the catalytic reaction of cholesterol oxidase and electron transfer from the oxidation of hydrogen peroxide in the system. The nickel ferrite nanoparticles were synthesized by co‐precipitation and calcination at various temperatures. These nanoparticles were then characterized using field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and X‐ray diffraction (XRD). The synthesized material calcined at 700 °C was well defined and presented the octahedral metal stretching with cubic NiFe2O4NPs phase. In cyclic voltammetric study, the ChOx‐PDDA‐CNTs‐NiFe2O4NPs/GCE showed 0.43 s−1 charge transfer rate constant (K s), 7.79×10−6 cm2 s−1 diffusion coefficient value (D ), 0.13 mm2 electroactive surface area (A e) and 3.58×10−8 mol cm−2 surface concentration ( ). This modified electrode exhibits stability in term of percent relative standard deviation (%RSD=0.62 %, n=10), reproducibility (%RSD=0.81, n=10), high sensitivity (25.76 nA per mg L−1 cm−2), linearity from 1 to 5,000 mg L−1 (R2=0.998) with a low detection limit (0.50 mg L−1). Its Michaelis‐Menten constant (K m) was 0.14 mM with 0.92 μA maximum current (I max) and demonstrated good selectivity without the effects of electroactive species such as ascorbic acid, glucose and uric acid. The cholesterol biosensor was successfully applied to determine cholesterol levels in human blood samples, showing promise due to its simplicity and availability.  相似文献   

3.
《Electroanalysis》2006,18(2):158-162
Optimum conditions have been found for voltammetric determination of mutagenic 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline by differential pulse voltammetry and adsorptive stripping differential pulse voltammetry on carbon paste electrode. The lowest limits of determination were found for adsorptive stripping differential pulse voltammetry in 0.1 mol dm?3 H3PO4 (5×10?7 mol dm?3 , 1×10?7 mol dm?3, and 1×10?7 mol dm?3 for 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline, respectively). The possibility to determine mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 5‐aminoquinoline or 6‐aminoquinoline, and mixtures of 5‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline by differential pulse voltammetry was verified. Binary mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline, and of 3‐aminoquinoline with 5‐aminoquinoline could be successfully analyzed.  相似文献   

4.
An effective, stable enzymatic glucose biosensor was fabricated on a glassy carbon electrode (GCE) surface using simple multicomposite materials (MCM): a solution of prepared poly(diallyldimethylammonium chloride)‐capped gold nanoparticles‐nickel ferrite particles‐carbon nanotubes‐chitosan (PDDA‐AuNPs‐NiFe2O4‐CNTs‐CHIT), electropolymerization of poly(o‐phenylenediamine) (PoPD) and immobilization of glucose oxidase (GOx). Biocompatibility and synergy of the MCM enhanced the immobilization and the reaction of GOx and as well as the electron transfer from an oxidation reaction of hydrogen peroxide in the system. The NiFe2O4 was synthesized by co‐precipitation and calcined at 700 °C. Characterization was carried out by field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) which presented both tetrahedral and octahedral metal stretching with a cubic NiFe2O4 crystal phase. The GOx/PoPD/MCM/GCE yielded a 0.77 s?1 charge transfer rate constant (Ks), a 2.28×10?6 cm2 s?1 diffusion coefficient value (D), a 0.21 mm2 electroactive surface area (Ae) and a 1.93×10?8 mol cm?2 surface concentration ( ) as determined by cyclic voltammetry. The modified electrode showed a durable operation time (n=97, more than 50 % I), repeatability (%RSD=0.38, n=10), reproducibility (%RSD=1.60, n=10), high sensitivity (853.07 μA mM?1 cm?2), selectivity without effects of electroactive species (aspirin, uric acid, caffeine, cholesterol, ascorbic acid and dopamine) and two linear ranges from 0.5 to 10 μM (R2=0.998) and 10 to 15,000 μM (R2=0.991) with a low detection limit (0.35 μM, S/N=3). Its Michaelis‐Menten constant (Km) was calculated as 93.51 μM with 46.30 μA maximum current (Imax). This proposed simple method was successfully applied for glucose determination in human blood samples.  相似文献   

5.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

6.
In this article, we report on the synthesis and new employment of magnetic nickelferrite oxide nanoparticles decorated reduced graphene oxide (NiFe2O4/rGO) to electrochemically sensing of flutamide. The preparation of this electrocatalyst was first assessed using various analytical instrumental techniques including FT‐IR spectroscopy, X‐ray diffraction spectroscopy, energy‐dispersive X‐ray spectroscopy, and field emission scanning and transmission electron microscopy. Besides, its electrochemical performance was investigated utilizing some electrochemical methods such as cyclic and differential pulse voltammetry, and also electrochemical impedance spectroscopy. The findings of this research are especially relevant for sensing flutamide in aqueous and biological samples. At the optimized conditions, the electrochemical sensor showed a linear range of 0.24–40.0 μmol L?1, the detection limit of 0.05 μmol L?1 flutamide, calibration sensitivity of 1.016 μA/μmol L?1, and repeatability and reproducibility of 1.7 % and 4.1 %, respectively. The selectivity of the method was investigated in the presence of ions, and species can generally exist in the biological medium. The resulting data of the present work represented that this type of magnetic nanocomposites is suitable for selective detection of flutamide in real samples of plasma and urine. The recoveries obtained for flutamide analyses represented lower than 5.0 percent of relative error in these real samples.  相似文献   

7.
A sensitive voltammetric technique has been developed for the determination of Fludarabine using amine‐functionalized multi walled carbon nanotubes modified glassy carbon electrode (NH2‐MWCNTs/GCE). Molecular dynamics simulations, an in silico technique, were employed to examine the properties including chemical differences of Fludarabine‐ functionalized MWCNT complexes. The redox behavior of Fludarabine was examined by cyclic, differential pulse and square wave voltammetry in a wide pH range. Cyclic voltammetric investigations emphasized that Fludarabine is irreversibly oxidized at the NH2‐MWCNTs/GCE. The electrochemical behavior of Fludarabine was also studied by cyclic voltammetry to evaluate both the kinetic (ks and Ea) and thermodynamic (ΔH, ΔG and ΔS) parameters on NH2‐MWCNTs/GCE at several temperatures. The mixed diffusion‐adsorption controlled electrochemical oxidation of Fludarabine revealed by studies at different scan rates. The experimental parameters, such as pulse amplitude, frequency, deposition potential optimized for square‐wave voltammetry. Under optimum conditions in phosphate buffer (pH 2.0), a linear calibration curve was obtained in the range of 2×10?7 M–4×10?6 M solution using adsorptive stripping square wave voltammetry. The limit of detection and limit of quantification were calculated 2.9×10?8 M and 9.68×10?8 M, respectively. The developed method was applied to the simple and rapid determination of Fludarabine from pharmaceutical formulations.  相似文献   

8.
A robust synthesis of magnetic NiFe2O4 nanoparticles via a hydrothermal technique was investigated. The prepared magnetic NiFe2O4 nanoparticles were characterized using powder X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), high‐resolution TEM, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, infrared spectroscopy and vibrating sample magnetometry. XRD and TEM analyses confirmed the formation of single‐phase ultrafine nickel ferrite nanoparticles with highly homogeneous cubic shape and elemental composition. Moreover, the prepared magnetic NiFe2O4 nanoparticles were used as an efficient, cheap and eco‐friendly catalyst for the Claisen–Schmidt condensation reaction between acetylferrocene and various aldehydes (aromatic and/or heterocyclic) yielding acetylferrocene chalcones in excellent yields, with easy work‐up and reduced reaction time. The products were purified via crystallization. The structures of the produced compounds were elucidated using various spectroscopic analyses (1H NMR, 13C NMR, GC–MS). The catalyst is readily recovered by simple magnetic decantation and can be recycled several times with no discernible loss of catalytic activity. Furthermore, the prepared chalcone derivatives were evaluated for their anti‐tumour activity against three human tumour cell lines, namely HCT116 (colon cancer), MCF7 (breast cancer) and HEPG2 (liver cancer), and showed a good activity against colon cancer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
We present here a simple procedure for the determination of mercury(II) using differential pulse anodic stripping voltammetry (DPASV) at palladium particles‐impregnated natural phosphate modified carbon paste electrodes (Pd‐NP‐CPE). The surface of modified electrode was characterized using SEM, infrared spectroscopy, X‐ray diffraction and electrochemical analysis. All experimental variables involved in the voltammetric stripping method were optimized. The detection limit was found to be 4.99×10?8 mol L?1 (S/N=3) that is not different to the permitted value for Hg(II) in water reported by the Environmental Protection Agency (EPA). The proposed electrode exhibits good applicability for monitoring Hg(II) in tap and wastewater.  相似文献   

10.
The voltammetric behavior of camptothecin (CPT) in Britton-Robinson (B-R) buffer solutions (pH 2.09-9.07) was studied by the means of linear sweep voltammetry (LSV), cyclic voltarnmetry (CV) and normal pulse voltammetry (NPV) at a hanging mercury drop electrode. In different pH range of B-R buffer solutions, CPT could cause three reduction waves. In B-R buffer solutions (pH 2.09-5.46), wave P1 yielded by CPT was a two-electron wave. Between pH 6.01 and 9.07, CPT could yield two reduction waves P2 and P3. In addition, the pure CPT obtained from camptotheca acumina grown only in China was determined by NPV, and a linear response was observed in the range of 2.0 × 10^-3-4.0 × 10^-2 mmol·L^-1 with a 0.9991 correlation coefficient and a 8.0 × 1^-4 mmol·L^-1 detection limit for CPT.  相似文献   

11.
A facile and controllable electrodeposition method was developed to directly attach gold nanoparticles (GNPs) on ordered mesoporous carbon (OMC). The GNPs on OMC substrate were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS), respectively. A nonenzymatic hydrogen peroxide (H2O2) sensor was fabricated on GNPs‐OMC/GCE. The sensor demonstrated a fast amperometric response (2.5 s), a wide linear range toward H2O2 concentrations between 2.0×10?6 and 3.92×10?3 M (R=0.999), and a low detection limit of 0.49 µM (S/N=3). Moreover, it exhibited good reproducibility and long‐term stability. The excellent electrocatalytical activity might be attributed to the synergistic effect of OMC and GNPs.  相似文献   

12.
A voltammetric study of the oxidation of Ceftazidime (CEFT) has been carried out at the glassy carbon electrode by cyclic, differential pulse (DPV) and square wave (SWV) voltammetry. The oxidation of CEFT was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. According to the linear relationship between the peak current and concentration, DPV and SWV voltammetric methods for CEFT assay in pharmaceutical dosage forms and human urine were developed. For analytical purposes, a well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 1.00 and 1.02 V for differential pulse and square wave voltammetric techniques, respectively. The linear response was obtained within the range of 4 × 10?6?8 × 10?5 M with a detection limit of 6 × 10?7 M for differential pulse and 4 × 10?6–2 × 10?4 M with a detection limit of 1 × 10?6 M for square wave voltammetric technique. The determination of CEFT in 0.1 M H2SO4 was possible over the 2 × 10?6–1 × 10?4 M range in urine sample for both techniques. The standard addition method was used for the recovery studies.  相似文献   

13.
As an alternative selection of electrocatalytic surface modifier, the electrochemically generated copper oxides is re‐ investigated by using cyclic voltammetry (CV), scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Interesting phenomena have been found, which indicate that the electrodeposition from the Cu2+ solution under cyclic voltammetric conditions can generate a transparent Cu(OH)2 crystalline on the surface of glassy carbon electrodes, and this crystalline can be further transferred to a novel cubic opaque CuO crystalline of about 300 nm in size by second step of cyclic voltammetry in pH 12 NaOH solution. The final electrode (denoted as nano‐CuO/GCE) can catalyze the oxidation (as well as the reduction) of H2O2 in basic solutions. It shows pH dependent three‐part catalytic mechanism in the range from pH 7 to pH 14. In 0.10 mol/L NaOH solution, the amperometric response at 0.15 V (vs. SCE) can give a current sensitivity as high as 139 mA/(mol·L?1) in the rage of 5.0×10?7?6.0×10?4 mol/L with a lower detection limit (s/n=3) of 2.5×10?8 mol/L, and a current sensitivity of 78.4 mA/(mol·L?1) in the rage of 6.0×10?4–2.0×10?3 mol/L. This electrode also has excellent reproducibility and stability. The mechanisms for the two steps of preparation and the catalytic reactions are proposed. The nano‐CuO crystalline modified electrode may have more applications in the field of electrochemical sensing.  相似文献   

14.
A modified electrode was fabricated by electrochemically deposition of Pt nanoparticles on the multiwall carbon nanotube covered glassy carbon electrode (Pt nanoparticles decorated MWCNT/GCE). A higher catalytic activity was obtained to electrocatalytic oxidation of ascorbic acid, dopamine, and uric acid due to the enhanced peak current and well‐defined peak separations compared with both, bare and MWCNT/GCE. The electrode surfaces were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). Individual and simultaneous determination of AA, DA, and UA were studied by differential pulse voltammetry. The detection limits were individually calculated for ascorbic acid, dopamine, and uric acid as being 1.9×10?5 M, 2.78×10?8 M, and 3.2×10?8 M, respectively. In simultaneous determination, LODs were calculated for AA, DA, and UA, as of 2×10?5 M, 4.83×10?8 M, and 3.5×10?7 M, respectively.  相似文献   

15.
A promising electrochemical nitrite sensor was fabricated by immobilizing Au@Fe3O4 nanoparticles on the surface of L ‐cysteine modified glassy carbon electrode, which was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The proposed sensor exhibited excellent electrocatalytic activity toward nitrite oxidation. The kinetic parameters of the electrode reaction process were calculated, (1–α)nα was 0.38 and the heterogeneous electron transfer coefficient (k) was 0.13 cm s?1. The detection conditions such as supporting electrolyte and pH value were optimized. Under the optimized conditions, the linear range for the determination of nitrite was 3.6×10?6 to 1.0×10?2 M with a detection limit of 8.2×10?7 M (S/N=3). Moreover, the as‐prepared electrode displayed good stability, repeatability and selectivity for promising practical applications.  相似文献   

16.
A magnetically separable NiFe2O4@GO–Pd composite (GO = graphene oxide) was successfully prepared by a facile one‐pot hydrothermal strategy. This new kind of hybrid material was fully characterized using powder X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometry. Structural characterizations confirmed the formation of NiFe2O4 and Pd nanocrystals, and the close anchoring between nanoparticles and GO sheets. Additionally, the as‐prepared NiFe2O4@GO–Pd nanocomposite was effectively employed in the palladium‐catalyzed Heck reaction in an ethanol–water system as a green solvent. The catalyst was completely recoverable with the simple application of an external magnetic field and with no obvious loss of catalytic activity even after six repeated cycles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
For the first time, a novel carbon nanotube bed electrode impregnated with silver–nanoparticles (AgNPs) for the determination of trace amounts of gabapentin (GBP) is described. We synthesized the AgNPs via a new procedure. The voltammetric behavior of the electrode was investigated by cyclic voltammetry. There were linear relationships in the ranges from 3.1×10?9 to 2.9×10?2 M and from 1.0×10?8 to 1.0×10?2 GBP with square wave and differential pulse voltammetric peak currents, respectively. The detection limits were 5.6×10?10 and 9.7×10?9 M, respectively. The electrode showed excellent response over a period of 2 months and was successfully applied in human plasma and pharmaceutical capsular products.  相似文献   

18.
Present work demonstrates the fabrication of new and facile sandwich‐type electrochemical immunosensor based on palladium nanoparticles (PdNPs), polyaniline (PANI) and fullerene‐C60 nanocomposite film modified glassy carbon electrode (PdNP@PANI‐C60/GCE) for ultrasensitive detection of Prostate‐specific antigen (PSA) biomarker. PdNP@PANI‐C60 was electrochemically synthesized on GCE and used as an electroactive substrate. PdNP@PANI‐C60 was characterized by scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDS), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Primary antibody anti‐PSA (Ab1) was covalently immobilized on PdNP@PANI‐C60/GCE using NHS/EDC linkers. In the presence of PSA antigen, horseradish peroxidase secondary antibody (HRP‐Ab2) was brought into the surface of the electrode, developing stable amplified signals of H2O2 reduction. Under the optimal conditions, a linear curve for determination of PSA at the proposed immunosensor was 1.6×10?4 ng.mL?1 to 38 ng.mL?1 with a limit of detection (LOD) of 1.95×10?5 ng.mL?1. The proposed immunosensor was successfully validated in serum and urine samples towards PSA detection with satisfactory and acceptable results.  相似文献   

19.
A graphite electrode modified with silver (Ag‐CPE) has been applied to detect mercury(II) using differential pulse voltammetry (DPV). Under optimized conditions, the calibration curve is linear in the range from 5.0×10?8 mol L?1 to 1.0×10?4 mol L?1 of mercury(II). The detection limit was found to be 3.38×10?8 mol L?1 with a relative standard deviation (RSD) of 2.25 % (n=8). The proposed method was successfully applied for the detection of mercury(II) in leachate samples. The Ag‐CP composites were characterized using X‐ray diffraction (XRD), BET adsorption analysis and scanning electron microscopy (SEM).  相似文献   

20.
A 1‐[2‐hydroxynaphthylazo]‐6‐nitro‐2‐naphthol‐4‐sulfonate/ CuO nanoparticles modified carbon paste electrode (HNNSCCPE) was constructed and the electro‐oxidation of isoprenaline at the surface of the modified electrode was studied using cyclic voltammetry (CV), chronoamperometry (CHA), and square wave voltammetry (SWV). Under the optimized conditions, the square wave voltammetric peak current of isoprenaline increased linearly with isoprenaline concentrations in the range of 1.0×10?7 to 7.0×10?4 M and detection limit of 5.0×10?8 M was obtained for isoprenaline. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of isoprenaline, acetaminophen and N‐acetyl‐L‐cysteine which makes it suitable for the detection of isoprenaline in the presence of acetaminophen and N‐acetyl‐L‐cysteine in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号