首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The mechanical behavior of semicrystalline polymers is strongly dependent on their crystallinity level, the initial underlying microstructure, and the evolution of this structure during deformation. A previously developed micromechanical constitutive model is used to capture the elasto‐viscoplastic deformation and texture evolution in semicrystalline polymers. The model represents the material as an aggregate of two‐phase layered composite inclusions, consisting of crystalline lamellae and amorphous layers. This work focuses on adding quantitative abilities to the multiscale constitutive model, in particular for the stress‐dependence of the rate of plastic deformation, referred to as the slip kinetics. To do that, the previously used viscoplastic power law relation is replaced with an Eyring flow rule. The slip kinetics are then re‐evaluated and characterized using a hybrid numerical/experimental procedure, and the results are validated for uniaxial compression data of HDPE, at various strain rates. A double yield phenomenon is observed in the model prediction. Texture analysis shows that the double yield point in the model is due to morphological changes during deformation, that induce a change of deformation mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1297–1310, 2011  相似文献   

2.
We present a study of isotropic and uniaxially oriented binary blend films comprising ≤1 wt % of the conjugated polymer poly(9,9‐dioctylfluorene) (PFO) dispersed in both ultra‐high molecular weight (UHMW) and linear‐low‐density (LLD) polyethylene (PE). Polarized absorption, fluorescence and Raman spectroscopy, scanning electron microscopy, and X‐ray diffraction are used to characterize the samples before and after tensile deformation. Results show that blend films can be prepared with PFO chains adopting a combination of several distinct molecular conformations, namely glassy, crystalline, and the so‐called β‐phase, which directly influences the resulting optical properties. Both PFO concentration and drawing temperature strongly affect the alignment of PFO chains during the tensile drawing of the blend films. In both PE hosts, crystallization of PFO takes place during drawing; the resulting ordered chains show optimal optical anisotropy. Our results clarify the PFO microstructure in oriented blends with PE and the processing conditions required for achieving the maximal optical anisotropy. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 22–38  相似文献   

3.
The time‐dependent yield and failure behavior of off‐axis loaded uniaxially oriented polypropylene tape is investigated. The yield and failure behavior is described with an anisotropic viscoplastic model. A viscoplastic flow rule is used with an equivalent stress, based on Hill's anisotropic yield criterion, and the Eyring flow theory combined with a critical equivalent strain definition. This model is based on factorization of the rate and draw ratio dependence and is capable of quantitatively predicting the rate, angle and draw ratio dependence of the yield stress as well as time‐to‐failure in various off‐axis tensile loading conditions characterized solely from the transverse direction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2026–2035, 2009  相似文献   

4.
New tricrystalline triblock terpolymers, polyethylene‐block‐poly(ε‐caprolactone)‐block‐poly(L‐lactide) (PE‐b‐PCL‐b‐PLLA), were synthesized by ROP of ε‐caprolactone (CL) and L‐lactide (LLA) from linear ω‐hydroxyl polyethylene (PE‐OH) macroinitiators. The linear PE‐OH macroinitiators were prepared by C1 polymerization of methylsulfoxonium methylide (polyhomologation). Tin(II) 2‐ethylhexanoate was used as the catalyst for the sequential ROP of CL and LLA in one‐pot polymerization at 85 °C in toluene (PE‐OH macroinitiators are soluble in toluene at 80 °C). 1H NMR spectra confirmed the formation of PE‐b‐PCL‐b‐PLLA triblock terpolymers through the appearance of the characteristic proton peaks of each block. GPC traces showed the increase in the number average molecular weight from PE‐OH macroinitiator to PE‐b‐PCL, and PE‐b‐PCL‐b‐PLLA corroborating the successful synthesis. The existence of three crystalline blocks was proved by DSC and XRD spectroscopy. © 2019 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2450–2456  相似文献   

5.
Despite the wealth of studies reporting mechanical properties of liquid crystal elastomers (LCEs), no theory can currently describe their complete mechanical anisotropy and nonlinearity. Here, we present the first comprehensive study of mechanical anisotropy in an all‐acrylate LCE via tensile tests that simultaneously track liquid crystal (LC) director rotation. We then use an empirical approach to gain a deeper insight into the LCE's mechanical responses at values of strain, up to 1.5, for initial director orientations between 0° and 90°. Using a method analogous to time–temperature superposition, we create master curves for the LCE's mechanical response and use these to deduce a model that accurately predicts the load curve of the LCE for stresses applied at angles between 15° and 70° relative to the initial LC director. This LCE has been shown to exhibit auxetic behavior for deformations perpendicular to the director. Interestingly, our empirical model predicts that the LCE will further demonstrate auxetic behavior when stressed at angles between 54° and 90° to the director. Our approach could be extended to any LCE; so it represents a significant step forward toward models that would aid the further development of LCE theory and the design and modeling of LCE‐based technologies. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1367–1377  相似文献   

6.
The dynamic mechanical behavior of molecularly oriented semicrystalline polyethylene terephthalate (PET) induced via the equal‐channel angular extrusion (ECAE) process was investigated. Dynamic mechanical analyses in both torsional mode and bending mode were utilized. The results indicate that the ECAE‐oriented PET has a higher dynamic storage modulus above the glass‐transition temperature than that of the reference (control sample). The combined effect of molecular orientation and crystallinity is responsible for the changes in the primary and secondary relaxations of PET. Further analyses show that the shifting and broadening of the primary and secondary peak positions in oriented PET are mainly due to the amorphous‐phase orientation because the crystallinity of PET decreases upon the ECAE processing. A good correlation was found between the structural anisotropy and the dynamic mechanical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1394–1403, 2001  相似文献   

7.
The mechanical performance of semicrystalline polymers is strongly dependent on their underlying microstructure, consisting of crystallographic lamellae and amorphous layers. In line with that, semicrystalline polymers have previously been modeled as two and three‐phase composites, consisting of a crystalline and an amorphous phase and, in case of the three‐phase composite, a rigid‐amorphous phase between the other two, having a somewhat ordered structure and a constant thickness. In this work, the ability of two‐phase and three‐phase composite models to predict the elastic modulus of semicrystalline polymers is investigated. The three‐phase model incorporates an internal length scale through crystalline lamellar and interphase thicknesses, whereas no length scales are included in the two‐phase model. Using linear elastic behavior for the constituent phases, a closed form solution for the average stiffness of the inclusion is obtained. A hybrid inclusion interaction model has been used to compute the effective elastic properties of polyethylene. The model results are compared with experimental data to assess the capabilities of the two‐ or three‐phase composite inclusion model. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
The effects of molecular characteristics and processing conditions on melt‐drawing behavior of ultrahigh molecular weight polyethylene (UHMW‐PE) are discussed, based on a combination of in situ X‐ray measurement and stress–strain behavior. The sample films of metallocene‐ and Ziegler‐catalyzed UHMW‐PEs with a similar viscosity average MW of ~107 were prepared by compression molding at 180 °C. Stress profiles recorded at 160 °C above the melting temperature of 135 °C exhibited a plateau stress region for both films. The relative change in the intensities of the amorphous scattering recorded on the equator and on the meridian indicated the orientation of amorphous chains along the draw axis with increasing strain. However, there was a substantial difference in the subsequent crystallization into the hexagonal phase, reflecting the molecular characteristics, that is, MW distribution of each sample film. Rapid crystallization into the hexagonal phase occurred at the beginning point of the plateau stress region in melt‐drawing for metallocene‐catalyzed UHMW‐PE film. In contrast, gradual crystallization into the hexagonal phase occurred at the middle point of the plateau stress region for the Ziegler‐catalyzed film, suggesting an ease of chain slippage during drawing. These results demonstrate that the difference in the MW distribution due to the polymerization catalyst system dominates the phase development mechanism during melt‐drawing. The effect of the processing conditions, that is, the including strain rate and drawing temperature, on the melt‐drawing behavior is also discussed. The obtained results indicate that the traditional temperature–strain rate relationship is effective for transient crystallization in to the hexagonal phase during melt‐drawing, as well as for typically oriented crystallization during ultradrawing in the solid state. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2455–2467, 2006  相似文献   

9.
Oriented β‐phase films were obtained by utilizing two different techniques: conventional uniaxial drawing at 80 °C of predominantly α‐phase films, and by drawing almost exclusively β‐phase films obtained by crystallization at 60 °C from dimethylformamide (DMF) solution with subsequent pressing. Wide angle X‐ray diffraction (WAXD) and pole figure plots showed that with the conventional drawing technique films oriented at a ratio (R) of 5 still contained about 20% of phase α, a crystallinity degree of 40% and β‐phase crystallographic c ‐axis orientation factor of 0.655. Drawing at 90 °C and with R = 4 of originally β‐phase films results in exclusively β‐phase films with crystallinity degree of 45% and orientation factor of 0.885. Crystalline phase, crystallinity degree, and crystallographic c‐axis orientation factor of both phases were also determined for α‐phase oriented films obtained by drawing α‐phase films at 140 °C. For films drawn at 140 °C the α to β phase transition drops to about 22%. Reduction in crystallinity degree with increasing R is more pronounced at draw temperature of 140 °C compared with 80 °C. Moreover, for both phases the c ‐axis orientation parallel to the draw direction is higher at draw temperature of 140 °C than at 80 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2793–2801, 2007  相似文献   

10.
A new experimental method for studying the mechano‐optical rheology of polymeric liquids and soft matter materials is presented. The method is based on a combination of rotational rheology and a recently developed optical technique—shear‐induced polarized light imaging (SIPLI). The method provides a unique opportunity to monitor a complete sample view during rheological measurements in plate–plate and cone‐and‐plate geometry. Applications of the method are presented including simultaneous SIPLI and the rheology of the oriented lamellar phase of block copolymers and liquid crystals as well as a study of the thermally induced reversible transformation of worm‐like micelles to spherical micelles. In addition, a direct relation between the shish formation and the polymer melt viscosity upturn during flow‐induced crystallization of semi‐crystalline polymers is demonstrated. An application of SIPLI for quantitative birefringence measurements is also shown. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2151–2170  相似文献   

11.
The orientation behavior of isotactic polypropylene (iPP) in α‐ and β‐crystal form was investigated by rheo‐optical Fourier transformed infrared (FTIR) spectroscopy. This method enabled quantification of the degree of orientation as a feature of structural changes during uniaxial elongation in not only the crystalline phase but also the amorphous one. Molecular orientation mechanisms can be successfully derived from experimental results. Generally, three mechanisms were detected for iPP: (1) interlamellar separation in the amorphous phase, (2) interlamellar slip and lamellar twisting at small elongations, and (3) intralamellar slip at high elongations. The third mechanism was favored by α‐PP, whereas β‐PP favored the second mechanism, which, in fact, was responsible for the different mechanical properties of both materials at the macroscopic level. On the other hand, crystallization conditions may have significantly affected the amorphous orientation. Nevertheless, for both iPP types the chains in the amorphous phase always oriented less than did those in the crystalline phase. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4478–4488, 2004  相似文献   

12.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   

13.
A quantitative study was undertaken of the anisotropy of low‐strain mechanical behavior for specially oriented polyethylene with controlled crystalline and lamellar orientation. The samples were prepared by the die drawing of injection‐molded rods of polyethylene and annealing. This produced a parallel lamellar structure for which a simple, three‐dimensional composite laminate model could be used to calculate the expected anisotropy. Experimental data, including X‐ray strain measurements of the lateral crystalline elastic constants, showed good quantitative agreement with the model prediction. The X‐ray strain measurements confirmed that the amorphous regions exert large constraints on the crystalline phase in the lateral directions, where an order of magnitude difference was found between the measured apparent lateral crystalline compliances in the lamellar‐stack sample and the expected values for a perfect crystal. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 755–764, 2000  相似文献   

14.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

15.
The stretching‐induced phase transition from tetragonal Form II to hexagonal Form I and the evolution of corresponding crystallite orientation were studied for the butene‐1/ethylene random copolymer with 1.5 mol % ethylene by using a combination of tensile test and in situ wide‐angle X‐ray diffraction. Three orientation pathways were distinguished for II‐I phase transition, including phase transition accomplishing within off‐axis oriented crystallites (Orientation Pathway 1), phase transition with simultaneous formation of highly oriented crystallites (Orientation Pathway 2), and phase transition occurring within the highly oriented crystallites already formed (Orientation Pathway 3). The kinetics of II‐I transition was correlated with the macroscopic mechanical response, which exhibits a strong dependence on orientation. In Orientation Pathway 1, the triggering of phase transition corresponds to the mechanical yielding. More interestingly, the kinetics of transition exhibits the identical dependence on stress. However, in Orientation Pathways 2 and 3, appearance of the highly oriented crystallites substantially alters transition kinetics, which is tentatively associated with the stress bearing by interstack tie chains. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 116–126  相似文献   

16.
Providing access to the benefits of additive manufacturing technologies in tissue engineering, vinyl esters recently came into view as appropriate replacements for (meth)acrylates as precursors for photopolymers. Their low cytotoxicity and good biocompatibility as well as favorable degradation behavior are their main assets. Suffering from rather poor mechanical properties, particularly in terms of toughness, several improvements have been made over the last years. Especially, thiol–ene chemistry has been investigated to overcome those shortcomings. In this study, we focused on additional means to further improve the toughness of an already established biocompatible vinyl ester‐thiol formulation, eligible for digital light processing‐based stereolithography. All molecules were based on poly(ε‐caprolactone) as building block and the formulations were tested regarding their reactivity and the resulting mechanical properties. They all performed well as toughness enhancer, ultimately doubling the impact resistance of the reference system. © 2018 The Authors. Journal of Polymer Science Part A: Polymer Chemistry published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 110–119  相似文献   

17.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   

18.
To address tremendous needs for developing efficiently heat dissipating materials with lightweights, a series of liquid crystalline epoxy resins (LCEs) are designed and synthesized as thermally conductive matrix. All prepared LCEs possess epoxies at the molecular side positions and cyanobiphenyl mesogenic end groups. Based on several experimental results such as differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction, it is found that the LCEs exhibited liquid crystalline mesophases. When LCE is cured with a diamine crosslinker, the cured LCE maintains the oriented LC domain formed in the uncured state, ascribing to a presence of dipole–diploe and π–π interactions between cyanobiphenyl mesogenic end groups. Due to the anisotropic molecular orientation, the cured LCE exhibits a high thermal conductivity of 0.46 W m?1 K?1, which is higher than those of commercially available crystalline or amorphous epoxy resins. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 708–715  相似文献   

19.
Poly(ethylene naphthalene‐2,6‐dicarboxylate) has been uniaxially stretched at different draw ratios and at two different temperatures below and above its glass transition (Tg ~ 120 °C) respectively, at 100 and 160 °C. Crystallinity has been evaluated from calorimetric analyses and compared to the values deduced by FTIR spectroscopic data. As expected, the obtained results are quite similar and show that films stretched at lower temperature (100 °C) are more crystalline than those stretched at 160 °C. Optical anisotropy associated with orientation has been evaluated by birefringence and show that films stretched at 100 °C are more birefringent than those stretched at 160 °C as a result of a higher chain relaxation above Tg. Polarized FTIR was also performed to evaluate the individual orientation of amorphous and crystalline phases by calculating dichroic ratios R and orientation functions 〈P2(cos θ)〉 and also show that amorphous and crystalline phases are more oriented in the case of films stretched below Tg. Nevertheless, the orientation of the amorphous phase is always weaker than that of the crystalline phase. Films stretched at 100 °C show a rapid increase in orientation (and crystallinity) with draw ratio and 〈P2(cos θ)〉 reaches a limit value when draw ratio becomes higher than 3.5. Films drawn at 160 °C are less oriented and their orientation is increasing progressively with draw ratio without showing a plateau. A careful measurement of the IR absorbance was necessary to evaluate the structural angles of the transition moments to the molecular chain axis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1950–1958, 2007  相似文献   

20.
Isotactic polypropylene (iPP) rich in β crystal modification was deformed by plane‐strain compression at T = 55–100 °C. The evolution of phase structure, morphology, and orientation were studied by DSC, X‐Ray, and SEM. The most important deformation mechanisms found were interlamellar slip operating in the amorphous layers, resulting in numerous fine deformation bands and the crystallographic slip systems, including the (110)[001]β chain slip and (110)[ ]β transverse slip. Shear within deformation bands leads to β→α solid state phase transformation in contrast to β→smectic transformation observed at room temperature. Newly formed α crystallites deform with an advancing strain by crystallographic slip mechanism, primarily the (010)[001]α chain slip. As a result of deformation and phase transformation within deformation bands β lamellae are locally destroyed and fragmented into smaller crystals. Deformation to high strains, above e = 1, brings further heavy fragmentation of lamellae, followed by fast rotation of crystallites with chain axis towards the direction of flow FD. This process, together with still active crystallographic slip, leads to the final texture with molecular axis of both crystalline β and α phase oriented along FD. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 92–108, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号