首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron delocalization of new mixed‐valent (MV) systems with the aid of lateral metal chelation is reported. 2,2′‐Bipyridine (bpy) derivatives with one or two appended di‐p‐anisylamino groups on the 5,5′‐positions and a coordinated [Ru(bpy)2] (bpy=2,2′‐bipyridine), [Re(CO)3Cl], or [Ir(ppy)2] (ppy=2‐phenylpyridine) component were prepared. The single‐crystal molecular structure of the bis‐amine ligand without metal chelation is presented. The electronic properties of these complexes were studied and compared by electrochemical and spectroscopic techniques and DFT/TDDFT calculations. Compounds with two di‐p‐anisylamino groups were oxidized by a chemical or electrochemical method and monitored by near‐infrared (NIR) absorption spectral changes. Marcus–Hush analysis of the resulting intervalence charge‐transfer transitions indicated that electron coupling of these mixed‐valent systems is enhanced by metal chelation and that the iridium complex has the largest coupling. TDDFT calculations were employed to interpret the NIR transitions of these MV systems.  相似文献   

2.
Bipyrimidine-bridged trimetallic complexes of the form {[(bpy)(2)Ru(bpm)](2)MCl(2)}(5+), where M = Rh(III) or Ir(III), bpy = 2,2'-bipyridine, and bpm = 2,2'-bipyrimidine, have been synthesized and characterized. These complexes are of interest in that they couple catalytically active rhodium(III) and iridium(III) metals with light-absorbing ruthenium(II) metals within a polymetallic framework. Their molecular composition is a light absorber-electron collector-light absorber core of a photochemical molecular device (PMD) for photoinitiated electron collection. The variation of the central metal has some profound effects on the observed properties of these complexes. The electrochemical data for the title trimetallics consist of a Ru(II/III) oxidation and sequential reductions assigned to the bipyrimidine ligands, Ir or Rh metal centers, and bipyridines. In both trimetallic complexes, the first oxidation is Ru based and the bridging ligand reductions occur prior to the central metal reduction. This illustrates that the highest occupied molecular orbital (HOMO) is localized on the ruthenium metal center and the lowest unoccupied molecular orbital resides on the bpm ligand. This bpm-based LUMO in {[(bpy)(2)Ru(bpm)](2)RhCl(2)}(5+) is in contrast with that observed for the monometallic [Rh(bpm)(2)Cl(2)](+) where the Rh(III)/Rh(I) reduction occurs prior to the bpm reduction. This orbital inversion is a result of bridge formation upon construction of the trimetallic complex. Both the Ir- and Rh-based trimetallic complexes exhibit a room temperature emission centered at 800 nm with tau = 10 ns. A detailed comparison of the spectroscopic, electrochemical, and spectroelectrochemical properties of these polymetallic complexes is described herein.  相似文献   

3.
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione).  相似文献   

4.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

5.
Electrochemiluminescence (ECL) and electrochemistry are reported for a heterometallic soft salt, [Ru(dtbubpy)3][Ir(ppy)2(CN)2]2 ( [Ir][Ru][Ir] ), consisting of a 2:1 ratio of complementary charged Ru and Ir complexes possessing two different emission colors. The [Ru]2+ and [Ir]? moieties in the [Ir][Ru][Ir] greatly reduce the energy required to produce ECL. Though ECL intensity in the annihilation path was enhanced 18× relative to that of [Ru(bpy)3]2+, ECL in the co‐reactant path with tri‐n‐propylamine was enhanced a further 4×. Spooling spectroscopy gives insight into ECL mechanisms: the unique light emission at 634 nm is due to the [Ru]2+* excited state and no [Ir]?* was generated in either route. Overall, the soft salt system is anticipated to be attractive and suitable for the development of efficient and low‐energy‐cost ECL detection systems.  相似文献   

6.
Four new complexes, [Zn(btca)(2,2′‐bpy)] ( 1 ), [Mn(btca)(2,2′‐bpy)] ( 2 ), [Co(btca)(phen)] ( 3 ), and [Cu(btca)(phen)] ( 4 ), (H2btca=benzotriazole‐5‐carboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), were successfully synthesized and characterized by elemental analysis, single crystal X‐ray diffraction, and IR spectroscopy. Complexes 1 – 4 crystallize in the orthorhombic system with space group of Pbca and show similar 2D layers, which are interlinked to supramolecular networks by π‐π stacking interactions. Furthermore, TGA curves show that complexes 1 – 4 have good thermal stability. Solid‐state fluorescent property of complex 1 was also investigated at room temperature.  相似文献   

7.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

8.
Yan Chen  Chun Liu  Lei Wang 《Tetrahedron》2019,75(47):130686
Cationic cyclometalated Ir(III) complexes (Ir1-Ir5) with fluorine-substituted 2-phenylpyridine (ppy) derivatives as C^N cyclometalating ligands and 2,2′-bipyridine (bpy) as the ancillary ligand, have been synthesized and fully characterized. The influences of the number and the position of fluorine atoms at the cyclometalating ligands on the photophysical, electrochemical and oxygen sensing properties of the Ir(III) complexes have been investigated systematically. The introduction of fluorine on the C^N cyclometalating ligands of the complexes results in blue-shifts of the maximum emission wavelengths, and increases in the photoluminescence quantum yields (ΦPL), phosphorescence lifetimes and energy gaps, compared to the non-fluorinated [Ir(ppy)2(bpy)]+PF6? (Ir0). Among them, 2-(2,4-difluorophenyl)pyridine-derived Ir4 shows the maximum blue-shift (514 nm vs. 575 nm for Ir0) and the highest ΦPL (50.8% vs. 6.5% for Ir0). The complex Ir3 with 2-(4-fluorophenyl)-5-fluoropyridine as C^N ligand exhibits the highest oxygen sensitivity and excellent operational stability in 10 cycles within 4000 s.  相似文献   

9.
The templated synthesis of organic macrocycles containing rings of up to 96 atoms and three 2,2′‐bipyridine (bpy) units is described. Starting with the bpy‐centred ligands 5,5′‐bis[3‐(1,4‐dioxahept‐6‐enylphenyl)]‐2,2′‐bipyridine and 5,5′‐bis[3‐(1,4,7‐trioxadec‐9‐enylphenyl)]‐2,2′‐bipyridine, we have applied Grubbs’ methodology to couple the terminal alkene units of the coordinated ligands in [FeL3]2+ complexes. Hydrogenation and demetallation of the iron(II)‐containing macrocyclic complexes results in the isolation of large organic macrocycles. The latter bind {Ru(bpy)2} units to give macrocyclic complexes with exocyclic ruthenium(II)‐containing domains. The complex [Ru(bpy)2(L)]2+ (isolated as the hexafluorophosphate salt), in which L=5,5′‐bis[3‐(1,4,7,10‐tetraoxatridec‐12‐enylphenyl)]‐2,2′‐bipyridine, undergoes intramolecular ring‐closing metathesis to yield a macrocycle which retains the exocyclic {Ru(bpy)2} unit. The poly(ethyleneoxy) domains in the latter macrocycle readily scavenge sodium ions, as proven by single‐crystal X‐ray diffraction and atomic absorption spectroscopy data for the bulk sample. In addition to the new compounds, a series of model complexes have been fully characterized, and representative single‐crystal X‐ray structural data are presented for iron(II) and ruthenium(II) acyclic and macrocyclic species.  相似文献   

10.
A series of [{(terpy)(bpy)Ru}(μ‐O){Ru(bpy)(terpy)}]n+ ( [RuORu]n+ , terpy=2,2′;6′,2′′‐terpyridine, bpy=2,2′‐bipyridine) was systematically synthesized and characterized in three distinct redox states (n=3, 4, and 5 for RuII,III2 , RuIII,III2 , and RuIII,IV2 , respectively). The crystal structures of [RuORu]n+ (n=3, 4, 5) in all three redox states were successfully determined. X‐ray crystallography showed that the Ru? O distances and the Ru‐O‐Ru angles are mainly regulated by the oxidation states of the ruthenium centers. X‐ray crystallography and ESR spectra clearly revealed the detailed electronic structures of two mixed‐valence complexes, [RuIIIORuIV]5+ and [RuIIORuIII]3+ , in which each unpaired electron is completely delocalized across the oxo‐bridged dinuclear core. These findings allow us to understand the systematic changes in structure and electronic state that accompany the changes in the redox state.  相似文献   

11.
The development of an efficient and stable artificial photosensitizer for visible‐light‐driven hydrogen production is highly desirable. Herein, a new series of charge‐neutral, heteroleptic tricyclometalated iridium(III) complexes, [Ir(thpy)2(bt)] ( 1 – 4 ; thpy=2,2′‐thienylpyridine, bt=2‐phenylbenzothiazole and its derivatives), were systematically synthesized and their structural, photophysical, and electrochemical properties were established. Three solid‐state structures were studied by X‐ray crystallographic analysis. This design offers the unique opportunity to drive the metal‐to‐ligand charge‐transfer (MLCT) band to longer wavelengths for these iridium complexes. We describe new molecular platforms that are based on these neutral iridium complexes for the production of hydrogen through visible‐light‐induced photocatalysis over an extended period of time in the presence of [Co(bpy)3]2+ and triethanolamine (TEOA). The maximum amount of hydrogen was obtained under constant irradiation over 72 h and the system could regenerate its activity upon the addition of cobalt‐based catalysts when hydrogen evolution ceased. Our results demonstrated that the dissociation of the [Co(bpy)3]2+ catalyst contributed to the loss of catalytic activity and limited the long‐term catalytic performance of the systems. The properties of the neutral complexes are compared in detail to those of two known non‐neutral bpy‐type complexes, [Ir(thpy)2(dtb‐bpy)]+ ( 5 ) and [Ir(ppy)2(dtb‐bpy)]+ ( 6 ; ppy=2‐phenylpyridine, dtb‐bpy=4,4′‐di‐tert‐butyl‐2,2′‐dipyridyl). This work is expected to contribute toward the development of long‐lasting solar hydrogen‐production systems.  相似文献   

12.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   

13.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

14.
A novel ligand 3‐(1H‐imidazo[4,5‐f][1,10]phenanthrolin‐2‐yl)‐4H‐1‐benzopyran‐4‐one (ipbp) and its ruthenium(II) complexes [Ru(bpy)2(ipbp)]2+ ( 1 ) and [Ru(ipbp)(phen)2]2+ ( 2 ) (bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis and mass, 1H‐NMR, and electronic‐absorption spectroscopy. The electrochemical behavior of the complexes was studied by cyclic voltammetry. The DNA‐binding behavior of the complexes was investigated by spectroscopic methods and viscosity measurements. The results indicate that complexes 1 and 2 bind with calf‐thymus DNA in an intercalative mode. In addition, 1 and 2 promote cleavage of plasmid pBR 322 DNA from the supercoil form I to the open circular form II upon irradiation.  相似文献   

15.
We report the unprecedented observation and unequivocal crystallographic characterization of the meta‐stable ligand loss intermediate solvento complex trans‐[Ru(bpy)(κ2‐btz)(κ1‐btz)(NCMe)]2+ ( 1 a ) that contains a monodentate chelate ligand. This and analogous complexes can be observed during the photolysis reactions of a family of complexes of the form [Ru($\widehat{NN}$ )(btz)2]2+ ( 1 a – d : btz=1,1′‐dibenzyl‐4,4′‐bi‐1,2,3‐triazolyl; $\widehat{NN}$ =a) 2,2′‐bipyridyl (bpy), b) 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy), c) 4,4′‐dimethoxy‐2,2′‐bipyridyl (dmeobpy), d) 1,10‐phenanthroline (phen)). In acetonitrile solutions, 1 a – d eventually convert to the bis‐solvento complexes trans‐[Ru($\widehat{NN}$ )(btz)(NCMe)2]2+ ( 3 a – d ) along with one equivalent of free btz, in a process in which the remaining coordinated bidentate ligands undergo a new rearrangement such that they become coplanar. X‐ray crystal structure of 3 a and 3 d confirmed the co‐planar arrangement of the $\widehat{NN}$ and btz ligands and the trans coordination of two solvent molecules. These conversions proceed via the observed intermediate complexes 2 a – d , which are formed quantitatively from 1 a – d in a matter of minutes and to which they slowly revert back on being left to stand in the dark over several days. The remarkably long lifetime of the intermediate complexes (>12 h at 40 °C) allowed the isolation of 2 a in the solid state, and the complex to be crystallographically characterized. Similarly to the structures adopted by complexes 3 a and d , the bpy and κ2‐btz ligands in 2 a coordinate in a square‐planar fashion with the second monodentate btz ligand coordinated trans to an acetonitrile ligand.  相似文献   

16.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

17.
1H, 13C and 15N NMR studies of iron(II), ruthenium(II) and osmium(II) tris‐chelated cationic complexes with 2,2′‐bipyridine and 1,10‐phenanthroline of the general formula [M(LL)3]2+ (M = Fe, Ru, Os; LL = bpy, phen) were performed. Inconsistent literature 1H signal assignments were corrected. Significant shielding of nitrogen‐adjacent protons [H(6) in bpy, H(2) in phen] and metal‐bonded nitrogens was observed, being enhanced in the series Ru(II) → Os(II) → Fe(II) for 1H, Fe(II) → Ru(II) → Os(II) for 15N and bpy → phen for both nuclei. The carbons are deshielded, the effect increasing in the order Ru(II) → Os(II) → Fe(II). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Two new bichromophoric ruthenium(II) complexes, [Ru(bpy)2(bpy‐CM)](PF6)2 and [Ru(bpy)2(bpy‐CM343)](PF6)2 (bpy=2,2′‐bipyridine, CM=coumarin) with appended coumarin ligands have been designed and synthesized. The energy‐transfer‐based sensing of esterase by the complexes has been studied by using UV/Vis and luminescence spectroscopic methods. The cytotoxicity and the cellular uptake of one of the complexes have also been investigated.  相似文献   

19.
Novel 2‐(1‐substituted‐1H‐1,2,3‐triazol‐4‐yl)pyridine (pytl) ligands have been prepared by “click chemistry” and used in the preparation of heteroleptic complexes of Ru and Ir with bipyridine (bpy) and phenylpyridine (ppy) ligands, respectively, resulting in [Ru(bpy)2(pytl‐R)]Cl2 and [Ir(ppy)2(pytl‐R)]Cl (R=methyl, adamantane (ada), β‐cyclodextrin (βCD)). The two diastereoisomers of the Ir complex with the appended β‐cyclodextrin, [Ir(ppy)2(pytl‐βCD)]Cl, were separated. The [Ru(bpy)2(pytl‐R)]Cl2 (R=Me, ada or βCD) complexes have lower lifetimes and quantum yields than other polypyridine complexes. In contrast, the cyclometalated Ir complexes display rather long lifetimes and very high emission quantum yields. The emission quantum yield and lifetime (Φ=0.23, τ=1000 ns) of [Ir(ppy)2(pytl‐ada)]Cl are surprisingly enhanced in [Ir(ppy)2(pytl‐βCD)]Cl (Φ=0.54, τ=2800 ns). This behavior is unprecedented for a metal complex and is most likely due to its increased rigidity and protection from water molecules as well as from dioxygen quenching, because of the hydrophobic cavity of the βCD covalently attached to pytl. The emissive excited state is localized on these cyclometalating ligands, as underlined by the shift to the blue (450 nm) upon substitution with two electron‐withdrawing fluorine substituents on the phenyl unit. The significant differences between the quantum yields of the two separate diastereoisomers of [Ir(ppy)2(pytl‐βCD)]Cl (0.49 vs. 0.70) are attributed to different interactions of the chiral cyclodextrin substituent with the Δ and Λ isomers of the metal complex.  相似文献   

20.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号