首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of 3‐(4,4,5,5‐tetraethoxy‐1‐hydroxy‐1‐arylpent‐2‐ynyl)quinoxalin‐2(1H)‐ones, obtained by reacting the lithium acetylide of 3,3,4,4‐tetraethoxybut‐1‐yne (TEB) with 3‐aroylquinoxalin‐2(1H)‐ones, appeared to undergo stereoselective cyclization in the 5‐exo‐Dig manner when heated at reflux in acidic, aqueous THF. In each case, the products were the corresponding (E)‐1,1‐diethoxy‐3‐(3‐hydroxy‐3‐arylfuro[2,3‐b]quinoxalin‐2(3H)‐ylidene)propan‐2‐ones and 1,1‐diethoxy‐3‐hydroxy‐3‐(3‐arylfuro[2,3‐b]quinoxalin‐2‐yl)propan‐2‐one, which were isolated in an approximate ratio of 2:1 in high total yield. Irrespective of the structure of the aryl group, both compounds were stable solids when kept in a refridgerator (3 °C), but when the latter product was dissolved in chloroform and stored at room temperature, it rearranged smoothly and quantitatively to the former compound within a few days.  相似文献   

2.
A novel visible‐light‐driven decarboxylative coupling of alkyl N‐hydroxyphthalimide esters (NHP esters) with quinoxalin‐2(1H)‐ones has been developed. This C(sp2)?C(sp3) bond‐forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3‐primary alkyl‐substituted quinoxalin‐2(1H)‐ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3‐alkylated quinoxalin‐2(1H)‐ones.  相似文献   

3.
The reaction of 7‐chloro‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 3a‐5a with sodium methylthiolate gave 1‐methyl‐7‐methylsulfanylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 8a‐c , whose reaction with m‐chloroperbenzoic acid afforded the 7‐methanesulfonyl‐1‐methylpyridazino[3,4‐b]‐quinoxalin‐4(1H)‐ones 9a‐c , respectively. The above substituent change at the 7‐position resulted in the activity alteration to microorganisms.  相似文献   

4.
The 3‐heteroaryl‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐e were synthesized by the oxidative‐hydrolytic ring transformation of the 3‐heteroaryl‐1,2‐diazepino[3,4‐b]]quinoxaline‐5‐carbonitriles 9a‐c , which were obtained by the 1,3‐dipolar cycloaddition reaction of the 2‐(2‐heteroarylmethylene‐1‐methylhydrazino)quinoxaline 4‐oxides with 2‐chloroacrylonitrile. The assignment of the thiophene and furan ring protons was carried out through the data of the NOE, decoupling, and coupling constants.  相似文献   

5.
The reaction of the quinoxaline N‐oxides 7a,b with diethyl ethoxymethylenemalonate gave the 1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 8a,b , whose reaction with N‐bromosuccinimide or N‐chlorosuccinimide afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 9a‐d. The reaction of compounds 9a‐d with hydrazine hydrate resulted in hydrolysis and decarboxylation to provide the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 10a‐d , whose reaction with nitrous acid effected oxidation to furnish the 3‐halogeno‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 11a‐d , respectively. The reaction of compounds 11a‐d with hydrazine hydrate afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4‐ols 12a‐d , whose oxidation provided the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐d , respectively. Compounds 6a‐d had antifungal activities in vitro.  相似文献   

6.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

7.
Substituted 2‐(benzylamino)‐2H‐1,4‐benzoxazin‐3(4H)‐ones are unstable under alkaline and acidic conditions, undergoing opening of the benzoxazinone ring. 2‐Bromo‐2H‐1,4‐benzoxazin‐3(4H)‐ones show similar degradation under alkaline conditions, while replacement of Br at C(2) to give 2‐hydroxy‐2H‐1,4‐benzoxazin‐3(4H)‐ones was observed only under mild alkaline conditions. Mechanisms of ring opening and degradation to 2‐aminophenol derivatives are proposed.  相似文献   

8.
Reaction of four equivalents of 4‐hydroxyquinolin‐2(1H)‐ones with one equivalent of acenaphthoquinone in absolute ethanol, containing catalytic triethylamine, gave 3,3′,3″,3?‐(1,2‐dihydroacenaphthylene)‐1,1,2,2‐tetrayl‐tetrakis(4‐hydroxyquinolin‐2(1H)‐ones) in a good to excellent yields. The structures of the products were elucidated by 1H NMR, 13C NMR, NMR, IR, mass spectra, and elemental analyses.  相似文献   

9.
The 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones derived from the 2,6,8‐triarylquinolin‐4(1H)‐ones were found to undergo Suzuki–Miyaura cross‐coupling with arylboronic acids to afford the corresponding 2,3,6,8‐tetraarylquinolin‐4(1H)‐ones. Sonogashira cross‐coupling of the 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones with terminal acetylene in DMF–water (4:1, v/v) in the presence of triethylamine, on the other hand, afforded the 2‐substituted 4,6,8‐triaryl‐1H‐furo[3,2‐c]quinolines in a single‐pot operation.  相似文献   

10.
The 3‐amino‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐one 6 and N‐(1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxalin‐3‐yl)carbamates 17a,b were synthesized from the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxa‐line‐3‐carboxylate 1b via the 1,5‐dihydro‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐3‐carbohydrazide 13b and then 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carboxazide 8 . Heating of compound 13b and arylalde‐hydes afforded the 1,4‐dihydro‐1‐methyl‐4‐oxopyridazino[3,4‐b]quinoxaline‐3‐carbo(2‐arylmethylene)hydrazides 14a‐d.  相似文献   

11.
A novel one‐pot approach for the synthesis of aryl substituted quinazolin‐4(3H)‐ones and 2,3‐dihydro‐4(1H)‐quinazolinones has been reported based on the reductive desulfurization of 3‐aryl‐2‐thioxo‐4(3H)‐quinazolinones with nickel boride in dry methanol at ambient temperature.  相似文献   

12.
An efficient methodology has been developed for the synthesis of quinoxalin‐2(1H)‐one derivatives of 2‐phenylimidazo[1,2‐a]pyridines by microwave‐irradiated Hinsberg heterocyclization between 2‐phenylimidazo[1,2‐a]pyridine‐3‐glyoxalates and o‐phenylenediamine using either montmorillonite K‐10 or Yb(OTf)3 as catalysts. Montmorillonite K‐10 was proven to be an efficient catalyst for the heterocyclization reaction between sterically hindered glyoxalate and o‐phenylenediamine only under microwave conditions. The use of Yb(OTf)3/tetrahydrofuran was also found to be an effective catalyst for the above chemical transformation among a series of Lewis acids screened under microwave conditions; however, comparatively lesser yields were obtained as compared with the use of montmorillonite K‐10.  相似文献   

13.
The reaction between ethyl 2‐chloro‐3‐(phenylamino)but‐2‐enoate ( 5 ) and aniline gave 4‐methyl‐3‐(phenylamino)quinolin‐2(1H)‐one ( 6 ) and not, as reported earlier in the literature, the isomeric 2‐methyl‐3‐(phenylamino)quinolin‐4(1H)‐one ( 1 ). The latter could be prepared by an alternative procedure. The structures of both isomers were established by extensive NMR spectroscopy including 1D‐NOE, 2D‐HSQC, and HMBC experiments. Consequently, the reinvestigation of the title reaction revealed an unexpected simple access to novel 4‐alkyl‐substituted 3‐(arylamino)quinolin‐2(1H)‐ones.  相似文献   

14.
The cyclization of aryl ketone anilides 3 with diethyl malonate to affords 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in good yields. 3‐Acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 are obtained by ring‐opening reaction of 4‐hydroxy‐6‐phenyl‐6H‐pyrano[3,2‐c]‐pyridin‐2,5‐diones 4 in the presence of 1,2‐diethylene glycol. The reaction of 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with hydroxylamine hydrochloride produces 4‐hydroxy‐3‐[N‐hydroxyethanimidoyl]‐1‐phenylpyridin‐2(1H)‐ones 6 from which 3‐alkyloxyiminoacetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 7 are obtained by reacting with alkyl bromides or iodides in the presence of anhydrous potassium carbonate with moderate yields. The similar compounds can be synthesized on refluxing 3‐acetyl‐4‐hydroxy‐1‐phenylpyridin‐2(1H)‐ones 5 with substituted hydroxylamine hydrochloride in the presence of sodium bicarbonate with good yields. Most of the synthesized compounds are characterized by IR and NMR spectroscopic methods.  相似文献   

15.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

16.
A series of novel 3‐(phenyl)‐2‐(3‐substituted propylthio) quinazolin‐4‐(3H)‐ones were synthesized by the reaction of 2‐(3‐bromopropylthio)‐3‐(phenyl) quinazolin‐4‐(3H)‐one with various amines. The starting material, 2‐(3‐bromopropylthio)‐3‐(phenyl) quinazolin‐4‐(3H)‐one was synthesized from aniline. When tested for their in vivo H1‐antihistaminic activity on conscious guinea pigs, all the test compounds protected the animals from histamine‐induced bronchospasm significantly. Compound 2‐(3‐(4‐methylpiperazin‐1‐yl) propylthiothio)‐3‐(phenyl) quinazolin‐4(3H)‐one ( Ph5 ) emerged as the most active compound (73.23% protection) of the series when compared with the reference standard chlorpheniramine maleate (70.09% protection). Compound Ph5 shows negligible sedation (5.01 %) compared with chlorpheniramine maleate (29.58%). Therefore, compound Ph5 can serve as the leading molecule for further development into a new class of H1‐antihistaminic agents.  相似文献   

17.
The one‐pot, three‐component, synthesis of a new series of 4‐hydroxy‐3‐(2‐arylimidazo[1,2‐a]pyridin‐3‐yl)quinolin‐2(1H)‐ones in the presence of DABCO as a catalyst has been achieved using aryl glyoxal monohydrates, quinoline‐2,4(1H,3H)‐dione, and 2‐aminopyridine in H2O/EtOH under reflux conditions. The cheapness of organocatalyst, simple workup, operational simplicity, regioselectivity, and high yields are some advantages of this protocol.  相似文献   

18.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

19.
3‐Alkyl/aryl‐3‐hydroxyquinoline‐2,4‐diones were reduced with NaBH4 to give cis‐3‐alkyl/aryl‐3,4‐dihydro‐3,4‐dihydroxyquinolin‐2(1H)‐ones. These compounds were subjected to pinacol rearrangement by treatment with concentrated H2SO4, resulting in 4‐alkyl/aryl‐3‐hydroxyquinolin‐2(1H)‐ones. When a benzyl (Bn) group was present in position 3 of the starting compound, its elimination occurred during the rearrangement, and the corresponding 3‐hydroxyquinolin‐2(1H)‐one was formed. The reaction mechanisms are discussed for all transformations. All compounds were characterized by IR, 1H‐ and 13C‐NMR spectroscopy, as well as mass spectrometry.  相似文献   

20.
The solid‐state structures of a series of seven substituted 3‐methylidene‐1H‐indol‐2(3H)‐one derivatives have been determined by single‐crystal X‐ray diffraction and are compared in detail. Six of the structures {(3Z)‐3‐(1H‐pyrrol‐2‐ylmethylidene)‐1H‐indol‐2(3H)‐one, C13H10N2O, (2a); (3Z)‐3‐(2‐thienylmethylidene)‐1H‐indol‐2(3H)‐one, C13H9NOS, (2b); (3E)‐3‐(2‐furylmethylidene)‐1H‐indol‐2(3H)‐one monohydrate, C13H9NO2·H2O, (3a); 3‐(1‐methylethylidene)‐1H‐indol‐2(3H)‐one, C11H11NO, (4a); 3‐cyclohexylidene‐1H‐indol‐2(3H)‐one, C14H15NO, (4c); and spiro[1,3‐dioxane‐2,3′‐indolin]‐2′‐one, C11H11NO3, (5)} display, as expected, intermolecular hydrogen bonding (N—H...O=C) between the 1H‐indol‐2(3H)‐one units. However, methyl 3‐(1‐methylethylidene)‐2‐oxo‐2,3‐dihydro‐1H‐indole‐1‐carboxylate, C13H13NO3, (4b), a carbamate analogue of (4a) lacking an N—H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号