首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this article, oyster shell powder (OSP) was used as fire safety agent with ammonium polyphosphate (APP) in thermoplastic polyurethane (TPU) composites. The synergistic fire safety improvement between OSP and APP was intensively investigated using limiting oxygen index (LOI), UL‐94, smoke density test (SDT), and cone calorimeter test (CCT). There is a good synergistic effect of reducing the fire hazards when OSP was used with APP in TPU. The peak heat release rate (pHRR) of the sample with 2.0‐wt% OSP and 8.0‐wt% APP decreased to 86.8 kW/m2 from 175.7 kW/m2 of the sample with only 10.0‐wt% APP. The SDT results showed that the luminous flux of sample OSP2/APP8 was up to 28.9% at the end of experiment with flame, which was much higher than that of pure TPU (1.5%). The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis/Fourier infrared spectrum analysis (TG‐IR). The result revealed the inert gasses (including CO2 and water vapor) produced by the reaction between OSP and APP. A char formed on the surface of composites, hindered the flame spread, reduced the release of combustible gas, and restricted the precursor of smoke into combustion zone.  相似文献   

2.
The application of chitosan (CS) in new materials is a hot research topic. In this paper, CS was used alone as flame retardant to prepare thermoplastic polyurethane elastomer (TPU) composites. Then, the flame retardancy and thermal decomposition behavior of TPU/CS composites were intensively investigated using cone calorimeter test (CCT), scanning electron microscope (SEM), microscale combustion colorimeter (MCC) test, thermogravimetric analysis/infrared spectrometry (TG‐IR), and gas chromatography‐mass spectrometry (GC‐MS). The results showed that CS can reduce the fire risk of TPU; 2.0‐wt% CS could make the peak value of heat release rate (pHRR) decreased to 457.2 kW/m2, reduced by 65.9% compared with TPU. And the peak value of smoke production rate (pSPR) and total smoke release (TSR) of the same sample was decreased by 79.4% and 54.2%, respectively. The TG‐IR and GC‐MS results confirmed that CS could promote TPU decomposition in advance, reacting with the decomposition products of TPU. Therefore, the production of combustible gas was reduced. The GC‐MS results showed that the production of isocyanates and ethers was reduced with the addition of CS. The digital photographs of SEM for the samples after CCT were shown that the char residue layer of the sample containing 2.0‐wt% CS was fibrous in shape. It could be speculated that the thermal decomposition products from TPU could react with CS at low temperature, which reduced the production of flammable gases. So CS had a good prospect in reducing the fire hazard for TPU.  相似文献   

3.
It is mainly studied that the smoke-suppression properties and synergistic flame-retardant effect of hollow glass microsphere (HM) in flame retardant thermoplastic polyurethane (TPU) composites based on ammonium polyphosphate (APP) as a flame-retardant. Also, the smoke suppression properties and flame-retardant effect were investigated by smoke density test (SDT), cone calorimeter test (CCT), limiting oxygen index, and thermogravimetric analysis, separately. The char residues left after CCT were examined by scanning electron microscopy. The data of SDT shows that HM could effectively decrease smoke production of TPU composites. The results of CCT reveal that the system of APP/HM could reduce heat release rate, smoke production rate, and total smoke release. It is shown that APP/HM is a good system with smoke-suppression and synergistic flame-retardant properties in flame-retardant TPU composites.  相似文献   

4.
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch‐melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG‐IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Three novel phosphorus‐containing Salen‐based derivatives (Salen‐DPCP‐M: M = Ni, Zn, and Mn), which include both phenyl phosphate structures (DPCP) and Salen‐metal complexes, were prepared for enhancing the fire safety of thermoplastic polyurethane (TPU). Thermogravimetric analysis (TGA) showed that Salen‐DPCP‐M altered the thermal degradation pathways of TPU probably due to the phosphorus‐containing structure of Salen‐DPCP‐M. The cone calorimeter test showed that the addition of 3 wt% of Salen‐DPCP‐Ni, Salen‐DPCP‐Zn, and Salen‐DPCP‐Mn lowered the peak of heat release rate (PHRR) from 1495 kW/m2 for neat TPU to 690, 875, and 813 kW/m2, respectively, for the TPU composites, which demonstrated that Salen‐DPCP‐M improved the fire safety of TPU. In addition, the release of toxic CO gas from the Salen‐DPCP‐Ni/TPU and Salen‐DPCP‐Zn/TPU composites was reduced by 78.2% and 80.0%, respectively. The results of TGA/infrared spectrometry (TG‐FTIR) showed that the incorporation of Salen‐DPCP‐Ni promoted the release CO2, while reducing the formation of harmful gases. Laser Raman spectroscopy (LRS) and scanning electron microscopy (SEM) showed that Salen‐DPCP‐Ni/TPU and Salen‐DPCP‐Zn/TPU composites formed a dense and stable char layer. Herein, the mechanism of these flame retardants containing novel phosphorus‐containing Salen‐metal complexes is also proposed.  相似文献   

6.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, fumaric acid (FA) which was a new type of environmental and low‐cost flame retardant was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using limiting oxygen index, cone calorimeter test, smoke density test, and thermogravimetric/Fourier transform infrared spectroscopy. It has been proved that FA could improve the difficulty of the ignition of the sample; the limiting oxygen index value of the sample (FA‐4) increased by 29.7% when 2.0 wt% FA was added to TPU. The cone calorimeter test showed that FA can greatly reduce heat release and smoke production during the combustion process of TPU composites. For example, compared with the pure TPU, the peak heat release rate and total smoke release of the sample (FA‐4) with 2.0 wt% FA were decreased by 50.8% and 51.5% respectively. The results of smoke density test showed that the luminous flux of the samples contained 0.5 wt% FA was increased by 79.2% compared with the pure TPU. The TG results revealed that the sample of FA‐4 had higher char residue content compared with the sample of TPU. The results of thermogravimetric/Fourier transform infrared spectroscopy proved that FA could decrease the initial decomposition temperature for TPU composites and increase the release of CO2 and H2O. All results of test illustrated that FA had good flame‐retardant effect on TPU.  相似文献   

8.
In this work, phosphorylated chitosan‐coated carbon microspheres (PCH@CMS) was successfully synthesized. Obtained PCH@CMS used as flame retardant was added into unsaturated polyester resin (UPR). Fourier infrared spectroscopy (FTIR) and X‐ray electron spectroscopy (XPS) results indicated that C═O, P─O, and P═O appeared on the surface of PCH@CMS. Compared with UPR, the residues of UPR/PCH@CMS‐10 at 800°C under nitrogen and air atmospheres increased by 9.0 and 3.9 wt%, respectively, and the peak heat release rate (pHRR) and the peak smoke release rate (pSPR) of UPR/PCH@CMS‐3 decreased by 18.9% and 23.5%, respectively. Limiting oxygen index (LOI), thermogravimetric analyzer (TG), and cone calorimeter test (CCT) results showed that the addition of PCH@CMS could enhance the flame retardancy and smoke suppression of the UPR composites. Moreover, the residues after CCT were characterized by scanning electron microscopy (SEM), XPS, and laser Raman spectroscopy (LRS). Based on the above results, the flame retardant mechanism of PCH@CMS was proposed. The carbon layer produced by the UPR/PCH@CMS composites was tortuous and could suppress the heat and pyrolysis product exchange with UPR matrix.  相似文献   

9.
Metal‐organic framework MIL‐53 (Fe)@C/graphite carbon nitride hybrid (MFeCN), a novel flame retardant, was synthesized by hydrothermal reaction and subsequently added into unsaturated polyester resin (UPR). The structure, morphology, and thermal stability of MFeCN were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), and thermogravimetric analysis (TG). The thermal stability and flammability of the UPR composites were characterized by TG and cone calorimeter tests (CCT). The results of CCT demonstrated that the peak heat release rate (pHRR), total heat release (THR), peak smoke production rate (pSPR), and total smoke production (TSP) of UPR/MFeCN‐4 were reduced by 39.8%, 10.2%, 33.3%, and 14.5%, respectively, comparing with UPR. The results of TG and CCT indicated that MFeCN could improve the thermal stability, flame retardancy, and smoke suppression properties of the UPR composites. The residues after CCT were then characterized by laser Raman spectroscopy (LRS), XPS, and SEM. Finally, based on the above experimental results and analysis, the flame retardancy mechanism of MFeCN was proposed.  相似文献   

10.
In this paper, a new type of flame retardant (AF‐Fe) based on para‐aramid fiber (AF) which was modified with iron diethyl phosphinate was applied for thermoplastic polyurethane elastomer (TPU). The flame‐retardant properties of TPU were tested using cone calorimeter test, smoke density test, and thermogravimetric analysis/infrared spectrometry. The cone calorimeter test showed that AF‐Fe can greatly reduce the heat release rate, total heat release, smoke factor, and other parameters of TPU composites compared with the sample of TPU/AF. For example, the pHRR of the composite with 1.0 wt% AF‐Fe was reduced by 15.19% compared with the sample with the same content of pure AF. In addition, the smoke factor of TPU/AFFe3 was reduced by 50.52% and 15.63% compared with TPU0 and TPU/AF respectively. The results of smoke density test showed that the luminous flux of TPU/AFFe3 was increased by 79.26% compared with the sample of TPU/AF. The TG results revealed that the sample with TPU/AFFe3 had lower weight loss rate and higher char residue content at 700°C compared with the sample of TPU/AF.  相似文献   

11.

The experimental investigation on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane were performed in the article. By the masterbatch-melt blending technique, the TiO2 particles were well dispersed in TPU/APP composites. The microscopic morphology structure was observed by TEM and SEM. TEM images of TPU–TiO2 masterbatch material showed that the grain sizes of TiO2 particles were 200–400 nm. The SEM result indicated that the TiO2 particles could enhance compatibility and dispersion of APP in TPU. The mechanical properties of TPU composites were characterized by dynamic mechanical analysis (DMA) and tensile tests, respectively. The DMA results indicated that TiO2 particles could improve the viscoelastic property of the TPU/APP composites. The tensile strength achieved a significant improvement with addition of TiO2 particles. APP/TiO2-5 obtains a better value of 344% than APP-1 (277%). Also, the flame-retardant property and thermal stability of the TPU composites were characterized using cone calorimeter test (CCT) and thermogravimetric analysis (TGA), respectively. The CCT results revealed that TiO2 particles could enhance the flame-retardant property of APP in TPU. The peak heat release rate of APP/TiO2-4 containing 0.5% TiO2 decreased to 157.27 kW m?2 from 225.5 kW m?2 of APP-1 sample without any TiO2. The TiO2 particles could promote the formation of carbon layers which restrict the diffusion of fuels into combustion zone and access of oxygen to the underlying materials. The TGA results indicated that TiO2 can improve the thermal stability of TPU/APP composites.

  相似文献   

12.
Polypropylene (PP)/sepiolite/zinc borate (BZn) composites were prepared by melt extrusion after pre‐modification of sepiolite with cetyltrimethylammonium bromide. The synergistic effects of organo‐sepiolite (OSEP) and BZn on the fire retardancy of PP were studied. X‐ray diffraction and transmission electron microscopy were used to characterize the morphology of the composite. Thermogravimetric analysis, cone calorimetric analysis, limiting oxygen index, and the UL‐94 protocol (Demaisheng technology Co. Ltd.,Shenzhen,China) were used to assess the thermal stability and fire retardancy of the composites. The fire retardancy of PP was greatly improved by introducing OSEP and BZn. The reduction in peak heat release rate for PP/BZn composites at 10% BZn loading is 62% compared with pristine PP, but increased to 78% for PP/10%BZn/10%OSEP composite. Other fire retardant parameters were also improved. The fire performance index of PP/10%BZn/10%OSEP composite was 0.045 sm2/kW compared with 0.014 sm2/kW of pristine PP. The average mass loss rate was 12.1 g/sec/m2 for the composite with both additives compared with 30.1 g/sec/m2 for pristine PP; the smoke production rate decreased by 37% from 0.117 m2/s of pristine PP to 0.074 m2/s of PP/OSEP/BZn. The char residue of composite increased from 0.6% in pristine PP to 12.19% in the composite. The limiting oxygen index increased from 17.1 in pristine PP to 20.8 in the composite: all the samples could obtain a UL‐94 horizontal burn rating. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Mg–Al–Fe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination–rehydration method, and characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The synergistic effects between melamine and LDHs in ethylene–vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94, cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetry–fourier transform infrared spectrometry (TG–IR). Though melamine decreases the LOI values of EVA/LDHs/melamine composites, a suitable amount of melamine can apparently improve UL 94 rating; the composite with 45 % LDHs and 5 % melamine can pass UL 94 test. The CCTs results indicate that heat release rates (HRR) of EVA/LDHs/melamine composites decreased in comparison with that of EVA/LDHs composites. The SDT results show that melamine is helpful to smoke suppression. The TG–IR data show that the ternary composites have a higher thermal stability than that of the binary composites.  相似文献   

14.
Thermoplastic polyurethane (TPU) elastomer has a widely application because of its perfect physical and chemical properties. However, it was limited by its low reliability in fire safety. In this paper, a new fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid ([EOOEMIm][BF4]) was used to improve fire safety of TPU. The fire safety of TPU composites was investigated by cone calorimeter test, smoke density test, and thermogravimetric/infrared spectroscopy, respectively. The results showed that modified molecular sieve (MMS) can improve fire safety of TPU effectively. The luminous flux increased to 10.10%, total smoke release decreased by 58%, and heat release rate declined of 65% than pure TPU when the addition of MMS was 0.5 wt%. In addition, MMS can improve thermal stability of TPU even in nitrogen according to thermogravimetric/infrared spectroscopy test. These proved that MMS has a satisfactory application prospect in fire safe polymer materials.  相似文献   

15.
In this paper, the fire behavior of unsaturated polyester resin (UP) modified with L-histidinium dihydrogen phosphate-phosphoric acid (LHP), being a novel intumescent fire retardant (IFR), was investigated. Thermal and thermomechanical properties of the UP with different amounts of LHP (from 10 to 30 wt. %) were determined by thermogravimetric analysis (TG) as well as dynamic mechanical thermal analysis (DMTA). Reaction to small flames was studied by horizontal burning (HB) test, while fire behavior and smoke emission were investigated with the cone calorimeter (CC) and smoke density chamber. Further, the analysis of volatile products was conducted (TGA/FT-IR). It was observed that the addition of LHP resulted in the formation of carbonaceous char inhibiting the thermal decomposition, burning rate and smoke emission. The most promising results were obtained for the UP containing 30 wt. % of LHP, for which the highest reduction in maximum values of heat release rate (200 kW/m2) and total smoke release (3535 m2/m2) compared to unmodified polymer (792 kW/m2 and 6895 m2/m2) were recorded. However, some important disadvantage with respect to water resistance was observed.  相似文献   

16.
A novel polyphosphazene/triazine bi‐group flame retardant in situ doping nano ZnO (A4‐d‐ZnO) was synthesized and applied in poly (lactic acid) (PLA). Fourier transform infrared (FTIR), solid state nuclear magnetic resonance (SSNMR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM), and energy dispersive spectrometer (EDS) were used to confirm the chemical structure of A4‐d‐ZnO. The thermal stability and the flame‐retardant properties of the PLA composites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), limiting oxygen index (LOI), vertical burning test (UL‐94), and micro combustion calorimeter (MCC) test. The results of XPS showed that A4‐d‐ZnO has been synthesized, and the doping ratio of ZnO was 7.2% in flame‐retardant A4‐d‐ZnO. TGA results revealed that A4‐d‐ZnO had good char forming ability (40 wt% at 600°C). The results of LOI, vertical burning test, and MCC showed that PLA/5%A4‐d‐ZnO composite acquired a higher LOI value (24%), higher UL94 rating, and lower pk‐HRR (501 kW/m2) comparing with that of pure PLA. It indicated that a small amount of flame‐retardant A4‐d‐ZnO could achieve great flame‐retardant performance in PLA composites. The catalytic chain scission effect of A4‐d‐ZnO could make PLA composites drip with flame and go out during combustion, which was the reason for the good flame‐retardant property. Moreover, after the addition of A4‐d‐ZnO, the impaired mechanical properties of PLA composites are minimal enough.  相似文献   

17.

Rigid polyurethane foam/aluminum diethylphosphinate (RUPF/ADP) composites were prepared by one-step water-blown method. Furthermore, scanning electron microscope (SEM), thermal conductivity meter, thermogravimetric analysis (TGA), limiting oxygen index, Underwriters Laboratories vertical burning test (UL-94) and microsacle combustion calorimetry were applied to investigate thermal conductivity, thermal stability, flame retardancy and combustion behavior of RPUF/ADP composites. Thermogravimetric analysis–Fourier transform infrared spectroscopy (TG–FTIR) was introduced to investigate gaseous products in degradation process of RPUF/ADP composites, while SEM and X-ray photoelectron spectroscopy were used to research char residue of the composites. It was confirmed that RPUF/ADP composites presented well cell structure with density of 53.1–59.0 kg m?3 and thermal conductivity of 0.0425–0.0468 W m?1 K?1, indicating excellent insulation performance of the composites. Flame retardant test showed that ADP significantly enhanced flame retardancy of RPUF/ADP composites, RPUF/ADP30 passed UL-94 V-1 rating with LOI of 23.0 vol%. MCC test showed that ADP could significantly decrease peak of heat release rate (PHPR) of RPUF/ADP composites. PHPR value of RPUF/ADP20 was decreased to 158 W g?1, which was 21.8% reduced compared with that of pure RPUF. TG–FTIR test revealed that the addition of ADP promoted the release of CO2, hydrocarbons and isocyanate compound in first-step degradation of RPUF matrix while inhibited the release of CO in second step degradation. Char residue analysis showed that the addition of ADP promoted polyurethane molecular chain to form aromatic and aromatic heterocyclic structure, enhancing strength and compactness of the char. This work associated a gas–solid flame retardancy mechanism with the incorporation of ADP, which presented an effective strategy for preparation of flame retardant RPUF composites.

  相似文献   

18.
This paper evaluates the structural performance of flame resistant phenolic matrix composites exposed to fire. Experimental fire tests were performed on a glass-phenolic composite under combined static loading and one-sided radiant heating. The reduction to the tension and compression failure strengths of the phenolic composite was measured in these tests for heat flux conditions ranging from 10 kW/m2 (∼225 °C) to 75 kW/m2 (∼700 °C). It was discovered that the failure strengths of the phenolic composite decreased rapidly in the event of fire, particularly under compressive loading when failure occurred more rapidly than under tensile loading. The phenolic composite, despite having high flame resistance, loses strength more rapidly and fails sooner than a more flammable vinyl ester composite. The study shows that greater flammability resistance does not necessarily result in better structural performance in fire. The poor structural performance of the phenolic composite was due to explosive delamination damage and cracking caused by vaporisation of water in the matrix phase. It is shown that removing water from phenolic composites by natural or artificial ageing reduces the incidence of delamination cracking and thereby improves the materials' structural performance in fire. It is concluded that phenolic composites do not provide good structural performance in fire, even though they have low flame and smoke properties. However, reducing the water content in the matrix phase below about 10% can greatly improve the structural performance of phenolic composites during fire.  相似文献   

19.
Microencapsulated ammonium polyphosphate (MAPP) with polyurethane resin has been prepared by in situ polymerization. The combination of MAPP and boron phosphate (BP) on the flammability properties of thermoplastic polyurethane (TPU) was studied by vertical burning (UL‐94) tests, limiting oxygen index tests, cone calorimetry (CONE), and microscale combustion calorimeter (MCC) whereas thermal stability was investigated by thermogravimetric analysis and real‐time Fourier transform infrared. Results showed that a suitable substitution of MAPP by BP could improve flame retardancy of the TPU/MAPP composites and TPU composites with MAPP/BP (15.5/2 wt%) achieving UL‐94 V‐0 rating. The CONE and MCC data showed synergistic effects between BP and MAPP in the composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The massive accumulation of phosphorus tailings (PT) not only occupies land resources and also causes great threat to ecological environment and human security. It is of great significance to explore the resource utilization of PT in some fields. Herein, aluminum hypophosphite (AHP) and PT are blended together to enhance the flame retardancy of thermoplastic polyurethane (TPU) composites, and the synergistic effects between AHP and PT are investigated systematically. Cone calorimeter test (CCT) results indicate that the peak heat release rate (PHRR) and total heat release (THR) of the samples containing 25 wt% AHP are decreased by 89% and 68%, respectively, and the total smoke release (TSR) show a reduction of 58.8%, in comparison with those of neat TPU. For the sample TPU/22.5AHP/2.5PT, the PHRR, THR, and TSR are decreased by 91.2%, 70%, and 63%, respectively. Scanning electron microscopy (SEM) analysis results demonstrate that the addition of PT can facilitate the generation of dense and compact char layers, preventing the release of heat and smoke effectively. All the abovementioned results indicate that the synergistic effects are existed between AHP and PT for enhancing the fire safety of TPU composites, which can provide a new way for the utilization of PT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号