首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of structural complementary decapeptides with phenyl boronic acid tails or borono‐decapeptides (BPs) were designed and synthesized for supramolecular self‐assembly. After dissolving these borono‐decapeptides in deionized (DI) water, well‐defined nanofibers were formed in BP1 (B(OH)2VEKELVKEKL‐OH) and BP3 (B(OH)2AELELARARL‐OH). It was found that the self‐assembled borono‐decapeptide BP1 and BP3 have a parallel β‐sheet conformation in the formed nanofibers. The strategy demonstrated here shows a great prospect in preparation of well‐ordered nanofibers via rationally designing the molecular structures of peptides.

  相似文献   


2.
Self‐assembled honeycomb polycarbonate films were deposited on polymer piezoelectric (poled polyvinylidene fluoride) substrates under a fast dip‐coating process. Ordered structures with micro‐scaled pores dispersed in the polycarbonate matrix were obtained, demonstrating two‐dimensional (2D) hexagonal packing. A theoretical model explaining the self‐assembling process is proposed. Fabricated structures have a potential as 2D tunable photonic crystals. Photonic bandgap location was estimated. Visible‐IR transmittance spectrum of the self‐assembled films was studied with a FT‐IR spectrometer. Diffraction properties of the honeycomb patterns were investigated. High transparency of the components makes possible IR optics applications of obtained structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Diverse chemical functionalization of the inner and outer surfaces of the nanotubes enables us to sense and visualize the encapsulation and transport behavior of biomacromolecular guests. The event occurs specifically in attoliter volume nanospace inside the hollow cylinder of the nanotubes. Comparison of the organic nanotube history with that of well‐known carbon nanotubes and a variety of molecular building blocks as tube‐forming compounds were first introduced. Asymmetric organic nanotubes with different inner and outer surfaces were discussed in terms of molecular design, immobilization of functional moieties, and molecular packing. Finally, the practical examples of the organic nanotubes as a nanocontainer, nanochannel, and nanopipette were also described to feature the concept of “attoliter chemistry.” © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2601–2611, 2008  相似文献   

4.
Free‐standing layer‐by‐layer (LbL) assembled thin films have recently found utility in a broad range of applications. Previously reported free‐standing LbL films have generally required covalent modifications to improve aqueous stability and render these films suitable for biomedical applications. Here, we engineered chitosan and poly(acrylic acid) containing polyelectrolyte multilayer films, which are readily detached from hydrophilic silicon in aqueous conditions. These films demonstrate remarkable stability over 28 days in simulated in vivo conditions (pH 7.4, phosphate buffered saline at 37 °C) without the incorporation of any covalent crosslinking modifications. These films exhibit moduli (27–420 kPa) resembling that of many biological tissues including tendon, show high visible light transmittance of greater than 50%, and prevent fibronectin adsorption. The properties of this new detachable LbL film architecture indicate its promise for use in a variety of applications, particularly in medicine and biotechnology. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 127–131  相似文献   

5.
We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self‐assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis and isothermal titration calorimetry, to effectively complex DNA through multivalent interactions. The reversibility of the ligation was exploited to demonstrate that template effects occur, whereby DNA imposes component selection in order to favor the most active DNA‐binding clusters. Furthermore, we show that a chemical effector can be used to trigger DNA release through component exchange reactions.  相似文献   

6.
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

7.
8.
Designing a lipopeptide (LP) vaccine with a specific asymmetric arrangement of epitopes may result in an improved display of antigens, increasing host‐cell recognition and immunogenicity. This study aimed to synthesise and characterise the physicochemical properties of a library of asymmetric LP‐based vaccine candidates that contained multiple CD4+ and CD8+ T‐cell epitopes from the model protein antigen, ovalbumin. These fully synthetic vaccine candidates were prepared by microwave‐assisted solid phase peptide synthesis. The C12 or C16 lipoamino acids were coupled to the N or C terminus of the OVA CD4 peptide epitope. The OVA CD4 LPs and OVA CD8 peptide constructs were then conjugated using azide–alkyne Huisgen cycloaddition to give multivalent synthetic vaccines. Physiochemical characterisation of these vaccines showed a tendency to self‐assemble in aqueous media. Changes in lipid length and position induced self‐assembly with significant changes to their morphology and secondary structure as shown by transmission electron microscopy and circular dichroism.  相似文献   

9.
A cationic dendritic molecule that has alkyl chains has been synthesized and employed to encapsulate anionic polyoxometalates through electrostatic interactions. The prepared surfactant‐encapsulated polyoxometalate (SEP) complexes were used as building blocks to fabricate self‐assemblies in solution and the solid state. Monodispersion, lamellar, and columnar assemblies of SEP complexes have been characterized in detail. With increasing the number of peripheral cationic dendrons on inorganic clusters, the SEPs undergo changes from globular assemblies to monodispersions in solution and from lamellar assemblies to hexagonal columnar structures in the solid state, depending on the amounts of cationic dendrons in the complexes. The structural evolvement was simulated through consideration of the size and shape of the cationic dendron and polyanionic clusters, and the experimental results are in good agreement with the interpretation of the simulations. The present research demonstrates a new kind of dendritic complex and provides a route for controlling their assembling states by simply alternating the number of cationic dendrons in the complexes.  相似文献   

10.
In this paper, we investigate the cation‐exchange properties of a self‐assembled hybrid material towards trivalent ions, lanthanides (La3+, Eu3+, Gd3+, Yb3+) and Fe3+. The bis‐zwitterionic lamellar material was prepared by sol–gel process from only 3‐aminopropyltriethoxysilane (APTES), succinic anhydride, and ethylenediamine. In ethanol heated under reflux, the exchange ethylenediammonium versus Ln3+ proved to be complete by complexometry measurements and elemental analyses, one Cl? ion per one LnIII remaining as expected for charge balance. In aqueous solution at 20 °C, the material was found to be selective towards lanthanide in spite of the similarity of their ionic radii. The cation uptake depends on the nature of the salt, the difference between two lanthanides reaching up to 20 % in some cases. Finally, ion‐exchange reaction with FeCl3 was chosen as a probe to get more information on the material after incorporation of trivalent ions. Based on Mössbauer spectroscopic investigations on the resulting material in conjunction with the XRD analysis of materials containing trivalent ions, a structural model was proposed to describe the incorporation of trivalent ions by exchange reaction within the original zwitterionic material.  相似文献   

11.
Owing to their versatility and biocompatibility, peptide‐based self‐assembled structures constitute valuable targets for complex functional designs. It is now shown that artificial capsules based on β‐barrel binding motifs can be obtained by means of dynamic covalent chemistry (DCC) and self‐assembly. Short peptides (up to tetrapeptides) are reversibly attached to resorcinarene scaffolds. Peptidic capsules are thus selectively formed in either a heterochiral or a homochiral way by simultaneous and spontaneous processes, involving chiral sorting, tautomerization, diastereoselective induction of inherent chirality, and chiral self‐assembly. Self‐assembly is shown to direct the regioselectivity of reversible chemical reactions. It is also responsible for shifting the tautomeric equilibrium for one of the homochiral capsules. Two different tautomers (keto‐enamine hemisphere and enol‐imine hemisphere) are observed in this capsule, allowing the structure to adapt for self‐assembly.  相似文献   

12.
Ionic self‐assembly, the combination of the building blocks with opposite charge by electrostatic association, has many merits, such as simple, cheap and easy to get, flexible reversible and wide range of applications. In this paper, fibres were synthesized by combining surfactant N, N‐dimethylferrocenylmethyl hexadecyl‐ammonium bromide (Fc16AB) and fluorescent dye methyl orange (MO) using ionic self‐assembly techniques. The morphology of self‐assemblies with different concentration are measured and characterized by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the concentration of Fc16AB and MO has great effects on the morphology of obtained microfibers.  相似文献   

13.
Healing hands : A complex interplay between colloidal and polymeric energetics in microgel self‐assembly behavior results in soft colloidal assemblies with self‐healing properties. Repulsive soft spheres can adopt highly compressed conformations in colloidal crystalline lattices without directly contacting the nearest neighbors (see picture). This distant action is directly responsible for the self‐healing of the assemblies.

  相似文献   


14.
A series of amphiphilic poly(L ‐leucine)‐block‐poly(ethylene glycol)‐block‐poly(L ‐leucine) (PLL‐PEG‐PLL) hybrid triblock copolymers have been synthesized. All the blocks in this system have good biocompatibility and low toxicity. The PLL‐PEG‐PLL copolymers could self‐assemble into micelles with PLL blocks as the hydrophobic core and PEG blocks as the hydrophilic shell, which were characterized by FT‐IR, 1H NMR, and transmission electron microscopy analysis. The critical micellar concentration of the copolymer was 95.0 mg · L−1. The circular dichroism spectrum shows that the PLL segments adopt a unique α‐helical conformation, which is found to play an important role in controlling the drug release rate. The drug release could be effectively sustained by encapsulation in the micelles. The copolymers may have potential applications in drug delivery.

  相似文献   


15.
Functionalization of polyols with aromatic amines offers a potential route to modify properties of polyurethanes, polyamides, and epoxies. Additionally, aniline termination of polyether backbones provides the opportunity to speed up reactions with isocyanates relative to hydroxyl functionalization and slow down epoxy reactions compared to reactions with primary and secondary amines. In this article, the synthesis, characterization, and physical properties of aniline‐terminated polyols with varying molecular weight, monomer type, and functionality is described. Numerous analytical techniques are employed to track the chemical modification kinetics and the resulting aniline functionalized polyol properties. In addition, synthesis and properties of poly(urethane‐urea) elastomers from several of the modified polyols are presented. The effect of hard segment composition and process temperature on tensile properties, dynamic mechanical properties, phase morphology, and chemical resistance is explored. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1730–1742  相似文献   

16.
17.
Dynamic self‐assembling amphiphilic surfactant molecules, popularly known as “micelles”, have received widespread attention, due to their ability to modulate the photophysical properties of various organic dyes upon encapsulation. Along with their well‐known use as cleaning agents, catalysts in organic reactions, and even for drug delivery purposes, these surfactant assemblies also show promising pertinence in the recognition of both ionic and nonionic targeted analytes. Low micropolarity and relatively hydrophobic environments promote their interaction with ionic analytes, whereas neutral species mostly affect the aggregation pattern of the probe molecules upon partitioning inside the micellar hydrophobic milieu. The environment‐sensitive nature of micelle‐based self‐assembled probes also prompts us to devise new sensor arrays for the recognition of multiple analytes. While this account will largely focus on our own work in developing surfactant‐triggered self‐assembled sensors, our findings have been placed in the context of the relevant contributions from others during their strategic evolution.  相似文献   

18.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


19.
20.
The synthesis of a benzenethiol‐derivatized porphyrin for flat‐lying self‐assembly on gold substrates is described. Acetyl protected thiol is not stable enough in Pd‐catalyzed reactions. While acrylate derivatives protected thiol group shows good tolerance in Pd‐catalyzed borylations and Suzuki‐Miyaura coupling reactions and no catalyst poisoning was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号