首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene‐bε‐caprolactone) (PE‐b‐PCL) diblock copolymers were synthesized by ring‐opening polymerization (ROP) of ε‐caprolactone (CL) with α‐hydroxyl‐ω‐methyl polyethylene (PE‐OH) as a macroinitiator and ammonium decamolybdate (NH4)8[Mo10O34] as a catalyst. Polymerization was conducted in bulk (130–150°C) with high yield (87–97%). Block copolymers with different compositions were obtained and characterized by 1H and 13C NMR, MALDI‐TOF, SAXS, and DSC. End‐group analysis by NMR and MALDI‐TOF indicates the formation of α‐hydroxyl‐ω‐methyl PE‐b‐PCL. The PE‐b‐PCL degradation was studied using thermogravimetric analysis (TGA) and alkaline hydrolysis. The PCL block was hydrolyzed by NaOH (4M), without any effect on the PE segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Several titanium complexes based on aminodiol ligands were tested as initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone under solution and bulk conditions. All complexes were found to be efficient under both conditions. For bulk polymerization at 70 °C, high activities were observed (113.3–156.2 gpoly mmolcat?1 h?1) together with controlled molar mass distribution. Kinetic studies revealed controlled polymerization, and the chain propagation was first order with respect to monomer conversion. One complex was also tested for the ROP of rac‐β‐butyrolactone and the end‐group analysis suggested that ring opening occurs through acyl‐oxygen bond cleavage via coordination–insertion mechanism. The microstructure analysis of polymer by 13C NMR indicates atactic polymer. Another complex was also found to be efficient initiator for the ROP of trimethylene carbonate under solution and bulk conditions. Again, end‐group analysis suggests coordination–insertion mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using salicylic acid (SAA) as the organocatalyst and benzyl alcohol as the initiator in bulk at 80 °C successfully proceeded to give a narrowly distributed poly(ε‐caprolactone) (PCL). In addition, 2‐hydroxyethyl methacrylate, propargyl alcohol, 6‐azido‐1‐hexanol, and methoxy poly(ethylene glycol) were also used as functional initiators. The 1H NMR, SEC, and MALDI‐TOF MS measurements of the PCL clearly indicate the presence of the initiator residue at the chain end, implying that the SAA‐catalyzed ROP of CL was through the activated monomer mechanism. The kinetic experiments confirmed the controlled/living nature of the SAA‐catalyzed ROP of CL. Furthermore, the block copolymerization of CL and δ‐valerolactone successfully proceeded to give poly(ε‐caprolactone)‐block‐poly(δ‐valerolactone). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1185–1192  相似文献   

4.
A series of well‐defined ABC 3‐Miktoarm star‐shaped terpolymers [Poly(styrene)‐Poly(ethylene oxide)‐Poly(ε‐caprolactone)](PS‐PEO‐PCL) with different molecular weight was synthesized by combination of the “living” anionic polymerization with the ring‐opening polymerization (ROP) using macro‐initiator strategy. Firstly, the “living” poly(styryl)lithium (PS?Li+) species were capped by 1‐ethoxyethyl glycidyl ether(EEGE) quantitatively and the PS‐EEGE with an active and an ethoxyethyl‐protected hydroxyl group at the same end was obtained. Then, using PS‐EEGE and diphenylmethylpotassium (DPMK) as coinitiator, the diblock copolymers of (PS‐b‐PEO)p with the ethoxyethyl‐protected hydroxyl group at the junction point were achieved by the ROP of EO and the subsequent termination with bromoethane. The diblock copolymers of (PS‐b‐PEO)d with the active hydroxyl group at the junction point were recovered via the cleavage of ethoxyethyl group on (PS‐b‐PEO)p by acidolysis and saponification successively. Finally, the copolymers (PS‐b‐PEO)d served as the macro‐initiator for ROP of ε‐CL in the presence of tin(II)‐bis(2‐ethylhexanoate)(Sn(Oct)2) and the star(PS‐PEO‐PCL) terpolymers were obtained. The target terpolymers and the intermediates were well characterized by 1H‐NMR, MALDI‐TOF MS, FTIR, and SEC. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1136–1150, 2008  相似文献   

5.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   

6.
Aluminum‐based salen and salan complexes mediate the ring‐opening polymerization (ROP) of rac‐β‐butyrolactone (β‐BL), rac‐lactide, and ε‐caprolactone. Al‐salen and Al‐salan complexes exhibit excellent control over the ROP of rac‐β‐butyrolactone, yielding atactic poly(3‐hydroxybutyrate) (PHB) with narrow PDIs of <1.15 for Al‐salen and <1.05 for Al‐salan. Kinetic studies reveal pseudo‐first‐order polymerization kinetics and a linear relationship between molecular weight and percent conversion. These complexes also mediate the immortal ROP of rac‐β‐BL and rac‐lactide, through the addition of excess benzyl alcohol of up to 50 mol eq., with excellent control observed. A novel methyl/adamantyl‐substituted Al‐salen system further improves control over the ROP of rac‐lactide and rac‐β‐BL, yielding atactic PHB and highly isotactic poly(lactic acid) (Pm = 0.88). Control over the copolymerization of rac‐lactide and rac‐β‐BL was also achieved, yielding poly(lactic acid)‐co‐poly(3‐hydroxybutyrate) with narrow PDIs of <1.10. 1H NMR spectra of the copolymers indicate a strong bias for the insertion of rac‐lactide over rac‐β‐BL. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
An organocatalytic approach to controlled/living ring‐opening polymerizations (ROPs) of O‐carboxyanhydrides (OCAs) using N‐heterocyclic carbenes (NHCs) as nucleophilic catalysts has been investigated. NHCs with different structures were used in order to compare the catalytic performances in the ROP of OCA of l ‐lactic acid. 1H NMR, SEC, and MALDI‐TOF MS measurements of the products clearly indicated a controlled/living manner of the polymerization. The controlled/living nature was further confirmed by kinetic and chain extension experiments. Additionally, polylol initiators were used to produce α,ω‐dihydroxy telechelic, 3‐, and 4‐armed star‐shaped polymers. Moreover, star‐shaped diblock copolymer, bearing methyl and phenyl side groups, has been successfully synthesized with OCA/NHC system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 . 52, 2306–2315  相似文献   

8.
A binary catalyst system of a chiral (R,R)‐SalenCoIII(2,4‐dinitrophenoxy) (salen = N,N‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐diphenylethylenediimine) in conjunction with (4‐dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac‐PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h?1 and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as‐prepared products were characterized by the IR, 1H NMR, 13C NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5050–5056, 2007  相似文献   

9.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The titanium complexes with one ( 1a , 1b , 1c ) and two ( 2a , 2b ) dialkanolamine ligands were used as initiators in the ring‐opening polymerization (ROP) of ε‐caprolactone. Titanocanes 1a and 1b initiated living ROP of ε‐caprolactone affording polymers whose number‐average molecular weights (Mn) increased in direct proportion to monomer conversion (Mn ≤ 30,000 g mol?1) in agreement with calculated values, and were inversely proportional to initiator concentration, while the molecular weight distribution stayed narrow throughout the polymerization (Mw/Mn ≤ 1.2 up to 80% monomer conversion). 1H‐NMR and MALDI‐TOF‐MS studies of the obtained poly(ε‐caprolactone)s revealed the presence of an isopropoxy group originated from the initiator at the polymer termini, indicating that the polymerization takes place exclusively at the Ti–OiPr bond of the catalyst. The higher molecular weight polymers (Mn ≤ 70,000 g mol?1) with reasonable MWD (Mw/Mn ≤ 1.6) were synthesized by living ROP of ε‐caprolactone using spirobititanocanes ( 2a , 2b ) and titanocane 1c as initiators. The latter catalysts, according MALDI‐TOF‐MS data, afford poly(ε‐caprolactone)s with almost equal content of α,ω‐dihydroxyl‐ and α‐hydroxyl‐ω(carboxylic acid)‐terminated chains arising due to monomer insertion into “Ti–O” bond of dialkanolamine ligand and from initiation via traces of water, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1230–1240, 2010  相似文献   

11.
New polynuclear zinc complexes containing tridentate Schiff base ligands were successfully synthesized and fully characterized. The solid‐state structure of the complexes was determined using single crystal X‐ray diffraction. The complexes display a tetranuclear cubane‐like core structure [Zn4O4] and sowed good catalytic activity towards the ring‐opening polymerization (ROP ) of rac‐lactide (rac‐LA ) and ε‐caprolactone (ε‐CL ) under solvent‐free conditions. The polylactic acid (PLA ) obtained from rac‐LA showed isotactic enrichment, as proved by homonuclear decoupled 1H‐NMR analysis. These complexes also showed good activity and superior control towards the ROP of rac‐LA and ε‐CL in the presence of benzyl alcohol as a co‐initiator. Furthermore, kinetic studies demonstrated that the ROP of rac‐LA and ε‐CL has a first order dependence on both monomer (rac‐LA and ε‐CL ) and catalyst concentration.  相似文献   

12.
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
A series of unsymmetrical 1‐[2,6‐bis(bis(4‐fluorophenyl)methyl)‐4‐MeOC6H2N]‐2‐aryliminoacenaphthene‐nickel(II) halides has been synthesized and fully characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance (1H NMR), 13C NMR, and 19F NMR spectroscopy as well as elemental analysis. The structures of Ni1 and Ni6 have been confirmed by the single‐crystal X‐ray diffraction. On activation with cocatalysts either ethylaluminum sesquichloride or methylaluminoxane, all the title nickel complexes display high activities toward ethylene polymerization up to 16.14 × 106 g polyethylene (PE) mol?1(Ni) h?1 at 30 °C, affording PEs with both high branches (up to 103 branches/1000 carbons) and molecular weight (1.12 × 106 g mol?1) as well as narrow molecular weight distribution. High branching content of PE can be confirmed by high temperature 13C NMR spectroscopy and differential scanning calorimetry. In addition, the PE exhibited remarkable property of thermoplastic elastomers (TPEs) with high tensile strength (σb = 21.7 MPa) and elongation at break (εb = 937%) as well as elastic recovery (up to 85%), indicating a better alternative to commercial TPEs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 130–145  相似文献   

14.
In this study, the homopolymerization of 2,2‐dimethyltrimethylene carbonate (DTC) and its copolymerizations with ε‐caprolactone (CL) were carried out in detail using the isothiourea‐based Lewis pairs comprised 2,3,6,7‐tetrahydro‐5H‐thiazolo(3,2‐a)pyrimidine and magnesium halides (MgX2) with benzyl alcohol (BnOH) as the initiator. The copolymerization of DTC and CL via one‐pot addition produced randomly sequenced copolymers. On the other hand, a well‐defined linear poly(ε‐caprolactone)–block–poly(2,2‐dimethyltrimethylene carbonate) (PCL‐b‐PDTC) diblock copolymer was prepared by simple sequential ring‐opening polymerization of CL and DTC. In addition, poly(ω‐pentadecalactone)–block–PDTC diblock copolymer was successfully prepared by the same strategy. Moreover, PDTC–poly(ethylene glycol) (PEG)–PDTC triblock copolymer was synthesized in the presence of PEG 2000. The effects of different polymerization conditions on the polymerization reactions have been systematically discussed. The resulting polymers were characterized by the 1H and 13C NMR spectra, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐ToF MS). The block copolyester structures were confirmed by the 13C NMR spectroscopy and DSC characterizations. These results indicated that the supposed mechanism was a dual catalytic mechanism. The proposed mechanism involved activation of the monomer via coordination to the MgX2, and the initiator alcohol was deprotonated by base. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2349–2355  相似文献   

15.
The ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL), 4‐methyl‐ε‐caprolactone (4‐MeCL), and 6‐methyl‐ε‐caprolactone (6‐MeCL) with a single‐site chiral initiator, R,R′‐(salen) aluminum isopropoxide (R,R′‐[1]), was investigated. The kinetic data for the ROP of the three monomers at 90° in toluene corresponded to first‐order reactions in the monomer and propagation rate constants of kε‐CL > k4‐MeCL ? k6‐MeCL. A notable stereoselectivity with a preference for the R‐enantiomer was observed in the ROP of 6‐MeCL with R,R′‐[1], whereas for 4‐MeCL, no stereoselectivity was found. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 429–436, 2007.  相似文献   

16.
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.

The part of the synthesis of four‐armed star‐shaped diblock poly(ε‐caprolactone)‐poly(ethylene oxide) copolymers as described.  相似文献   


17.
The first solvent‐free cationic complexes of the divalent rare‐earth metals, [{RO}REII]+[A]? (REII=YbII, 1 ; EuII, 2 ) and [{LO}REII]+[A]? ([A]?=[H2N{B(C6F5)3}2]?; REII=YbII, 3 ; EuII, 4 ), have been prepared by using highly chelating monoanionic aminoether‐fluoroalkoxide ({RO}?) and aminoether‐phenolate ({LO}?) ligands. Complexes 1 and 2 are structurally related to their alkaline‐earth analogues [{RO}AE]+[A]? (AE=Ca, 5 ; Sr, 6 ). Yet, the two families behave very differently during catalysis of the ring‐opening polymerization (ROP) of L ‐lactide (L ‐LA) and trimethylene carbonate (TMC) performed under immortal conditions with excess BnOH as an exogenous chain‐transfer agent. The ligand was found to strongly influence the behavior of the REII complexes during ROP catalysis. The fluoroalkoxide REII catalysts 1 and 2 are not oxidized under ROP conditions, and compare very favorably with their Ca and Sr congeners 5 and 6 in terms of activity (turnover frequency (TOF) in the range 200–400 molL‐LA (molEu h?1)) and control over the parameters during the immortal ROP of L ‐LA (Mn,theorMn,SEC, Mw/Mn<1.05). The EuII‐phenolate 4 provided one of the most effective ROP cationic systems known to date for L ‐LA polymerization, exhibiting high activity (TOF up to 1 880 molL‐LA?(molEu h)?1) and good control (Mw/Mn=1.05). By contrast, upon addition of L ‐LA the YbII‐phenolate 3 immediately oxidizes to inactive REIII species. Yet, the cyclic carbonate TMC was rapidly polymerized by combinations of 3 (or even 1 ) and BnOH, revealing excellent activities (TOF=5000–7000 molTMC?(molEu h)?1) and unusually high control (Mn,theorMn,SEC, Mw/Mn<1.09); under identical conditions, the calcium derivative 5 was entirely inert toward TMC. Based on experimental and kinetic data, a new ligand‐assisted activated monomer ROP mechanism is suggested, in which the so‐called ancillary ligand plays a crucial role in the catalytic cycle. A coherent reaction pathway computed by DFT, compatible with the experimental data, supports the proposed scenario.  相似文献   

18.
The ring‐opening polymerization (ROP) of β‐butyrolactone (β‐BL) has been studied using the organocatalysts of diphenyl phosphate (DPP) and bis(4‐nitrophenyl) phosphate (BNPP). The controlled ROP of β‐BL was achieved using BNPP, whereas that of using DPP was insufficient because of its low acidity. For the BNPP‐catalyzed ROP of β‐BL, the dual activation property for β‐BL and the chain‐end models of poly(β‐butyrolactone) (PBL) were confirmed by NMR measurements. The optimized polymerization condition for the ROP of β‐BL proceeded through an O‐acyl cleavage to produce the well‐defined PBLs with molecular weights up to 10,650 g mol?1 and relatively narrow polydispersities of 1.19–1.39. Functional initiators were utilized for producing the end‐functionalized PBLs with the ethynyl, maleimide, pentafluorophenyl, methacryloyl, and styryl groups. Additionally, the diblock copolymers consisting of the PBL segment with the polyester or polycarbonate segments were prepared by the BNPP‐catalyzed ROPs of ε‐caprolactone or trimethylene carbonate without quenching. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2032–2039  相似文献   

19.
Alternating copolymerization of propylene oxide (PO) and carbon dioxide (CO2) was realized under mild conditions with a moderate turnover frequency (TOF), employing sole bifunctional cobalt salen complexes containing Lewis acid metal center and covalent bonded Lewis base on the ligand. Variation of the covalent bonded Lewis base substituents on the salen ligands could tailor the catalytic activity with TOF changing from 19.3 to 34.9 h?1, polymeric/cyclic carbonate selectivity from 95.3 to 72.8%, and the head‐to‐tail structure in the polymer from 72.2 to 86.0%. The IR analysis confirmed that the Lewis base moiety on one molecule could coordinate with cobalt center of adjacent molecule, playing similar role to the Salen metal complex/Lewis base binary catalytic system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 359–365, 2010  相似文献   

20.
Monofunctional polylactones were prepared by Bu2Sn(OMe)2‐initiated ring‐opening polymerization of ε‐caprolactone (εCL) followed by acylation with bromoacetylbromide. Telechelic polylactones and polylactides were prepared via ring‐expansion polymerization with 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP) or 2,2‐dibutyl‐2‐stanna‐pentaoxacyclotridecane (Bu2SnTEG) as cyclic initiator. In situ combination of the polymerization with condensation by means of bromoacetylbromide yielded polylactones having bromoacetate endgroups. These endgroups were subjected to nucleophilic substitution with 3‐mercaptopropyl trimethoxysilane (3‐MPTMS). Analogous experiments were conducted with dl‐lactide. The telechelic trimethoxysilyl‐endcapped polylactones were characterized by viscosity, 1H and 13C NMR‐spectroscopy, and MALDI‐TOF mass spectrometry. The mass spectra revealed small amounts of cyclic oligolactones as byproducts in all samples. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3667–3674, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号