首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The Verwey transition in Fe3O4 nanoparticles with a mean diameter of 6.3 nm is suppressed after capping the particles with a 3.5 nm thick shell of SiO2. By X‐ray absorption spectroscopy and its associated X‐ray magnetic circular dichroism this suppression can be correlated to localized Fe2+ states and a reduced double exchange visible in different site‐specific magnetization behavior in high magnetic fields. The results are discussed in terms of charge trapping at defects in the Fe3O4/ SiO2 interface and the consequent difficulties in the formation of the common phases of Fe3O4. By comparison to X‐ray absorption spectra of bare Fe3O4 nanoparticles in course of the Verwey transition, particular changes in the spectral shape could be correlated to changes in the number of unoccupied d states for Fe ions at different lattice sites. These findings are supported by density functional theory calculations.  相似文献   

2.
Powders of Fe–Mg–O nanocomposite particles have been grown using a novel chemical vapor synthesis approach that employs the decomposition of a metalorganic precursor inside the metal combustion flame. After annealing in controlled gas atmospheres composition distribution functions, structure and phase stability of the obtained magnesiowüstite nanoparticles are measured with a combination of techniques such as inductively coupled plasma‐optical emission spectroscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, and scanning and transmission electron microscopy. Complementary Mössbauer spectroscopy measurements reveal that depending on Fe loading and temperature of annealing either metastable and superparamagnetic solid solutions of Fe3+ ions in periclase (MgO) or phase separated mixtures of MgO and ferrimagnetic magnesioferrite (MgFe2O4) nanoparticles can be obtained. The described combustion technique represents a novel concept for the production of mixed metal oxide nanoparticles. Adressing the impact of selected annealing protocols, this study underlines the great potential of vapor phase grown non‐equilibrium solids, where thermal processing provides means to trigger phase separation and, concomitantly, the emergence of new magnetic properties.  相似文献   

3.
CdS, ZnS and ZnCdS nanoparticles of various sizes (1–10 nm) are synthesized using a wet chemical route including passivation by organic capping molecules. The particles can also be doped with transition metal ions. The optical properties of the particles are investigated using UV absorption and photoluminescence spectroscopies. High resolution photoelectron spectroscopy using variable photon energy from a synchrotron source is performed to obtain detailed information about the nanoparticle surfaces. These investigations are able to reveal the termination of the nanoparticles and the nature of bonding between the surface atoms and stabilizing organic molecules.  相似文献   

4.
The optical properties of two‐dimensional assemblies of metal nanoparticles are strongly influenced by the morphological configuration of the metal particles in the layer. Therefore, we correlate the structural and optical properties of two‐dimensional, hexagonal gold nanoparticle arrays. We characterize the structure of the arrays using grazing‐incidence small angle X‐ray scattering (GISAXS). From the GISAXS pattern, we determine the size of the gold particles as well as the lattice spacing of the hexagonal assembly. Based upon these parameters we calculate the dielectric function of the gold particle array using the Maxwell–Garnett effective medium theory. We further deduce the absorption spectrum which closely follows the measured absorption and photoconductance spectrum. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Quaternary kesterite‐type Cu2ZnSnS4 (CZTS) nanoparticles (NPs) were successfully synthesized by a single‐step solvothermal process. Semiconductor CZTS nanoparticles were obtained from ethylene glycol (EG) and CZTS precursor after solvothermal process at 180 °C for 30 h in polyvinylpyrrolidone (PVP) medium. The synthesized CZTS NPs were further annealed at 450 °C in nitrogen atmosphere and used for further characterizations. The CZTS NPs were characterized using X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), micro Raman spectroscopy, high resolution transmission electron microscopy (HRTEM) and X‐ray photoelectron spectroscopy (XPS). The optical properties of the CZTS NPs were recorded by UV–vis absorption spectroscopy. The results showed that the synthesized CZTS nanoparticles are kesterite‐type CZTS, with good crystallinity and a stoichiometric composition. Moreover, the prepared nanoparticles have a size ranging from 5–7 nm and a band gap of ~1.5 eV.

  相似文献   


6.
X‐ray‐induced redox changes can lead to incorrect assignments of the functional states of metals in metalloprotein crystals. The need for on‐line monitoring of the status of metal ions (and other chromophores) during protein crystallography experiments is of growing importance with the use of intense synchrotron X‐ray beams. Significant efforts are therefore being made worldwide to combine different spectroscopies in parallel with X‐ray crystallographic data collection. Here the implementation and utilization of optical and X‐ray absorption spectroscopies on the modern macromolecular crystallography (MX) beamline 10, at the SRS, Daresbury Laboratory, is described. This beamline is equipped with a dedicated monolithic energy‐dispersive X‐ray fluorescence detector, allowing X‐ray absorption spectroscopy (XAS) measurements to be made in situ on the same crystal used to record the diffraction data. In addition, an optical microspectrophotometer has been incorporated on the beamline, thus facilitating combined MX, XAS and optical spectroscopic measurements. By uniting these techniques it is also possible to monitor the status of optically active and optically silent metal centres present in a crystal at the same time. This unique capability has been applied to observe the results of crystallographic data collection on crystals of nitrite reductase from Alcaligenes xylosoxidans, which contains both type‐1 and type‐2 Cu centres. It is found that the type‐1 Cu centre photoreduces quickly, resulting in the loss of the 595 nm peak in the optical spectrum, while the type‐2 Cu centre remains in the oxidized state over a much longer time period, for which independent confirmation is provided by XAS data as this centre has an optical spectrum which is barely detectable using microspectrophotometry. This example clearly demonstrates the importance of using two on‐line methods, spectroscopy and XAS, for identifying well defined redox states of metalloproteins during crystallographic data collection.  相似文献   

7.
An energy‐dispersive X‐ray absorption spectroscopy beamline mainly dedicated to X‐ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending‐magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set‐up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr‐doped manganites and the structural deformation in nickel perovskites under high applied pressure.  相似文献   

8.
To improve their chemical mechanical polishing (CMP) performance, ceria nanoparticles were surface modified with γ-aminopropyltriethoxysilane (APS) through silanization reaction with their surface hydroxyl group. The compositions, structures and dispersibility of the modified ceria particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), laser particle size analyzer, zeta potential measurement and stability test, respectively. The results indicated that APS had been successfully grafted onto the surface of ceria nanoparticles, which led to the modified ceria nanoparticles with better dispersibility and stability than unmodified ceria particles in aqueous fluids. Then, CMP performance of the modified ceria nanoparticles on glass substrate was investigated. Experimental results showed that the modified ceria particles exhibited lower material removal rate (MRR) but much better surface quality than unmodified ceria particles, which may be explained by the hardness reduction of ceria particles, the enhancement of lubrication of the particles and substrate surfaces, and the elimination of the agglomeration among the ceria particles.  相似文献   

9.
周小东  张少锋  周思华 《物理学报》2015,64(16):167301-167301
利用金属蒸发真空多弧离子源注入机, 将Au离子注入到高纯石英玻璃来制备镶嵌有Au 纳米颗粒的衬底材料, 随后将化学方法合成的CdTe量子点旋涂在玻璃衬底上制备了Au纳米颗粒和CdTe量子点复合体系. 通过对镶嵌有Au纳米颗粒的衬底进行热退火处理来控制Au纳米颗粒的生长和分布, 系统研究了Au纳米颗粒的局域表面等离子体共振对CdTe量子点光致发光性能的影响. 利用光学吸收谱、原子力显微镜、透射电子显微镜和光致发光谱对样品进行了表征和测试. 光致发光谱表明, Au纳米颗粒的局域表面等离子体对CdTe量子点的发光有增强效应也有猝灭效应. 深入分析了Au纳米颗粒和CdTe量子点之间的相互作用过程, 提出了关于Au-CdTe 纳米复合体系中CdTe 发光增强和猝灭的新机理. 该实验结果为利用金属纳米颗粒表面等离子体技术制备高发光性能的光电子器件提供了较好的参考.  相似文献   

10.
This work reports the first synthesis of MAPbBr3 perovskite nanocrystals (PNCs) using amino acids as the ligand with excellent optical properties. A variety of amino acids are used to optimize the luminescence properties. A mechanochemical approach has taken lead over conventional colloidal chemistry during synthesis. All morphological and optical studies are performed to characterize the synthesized perovskite nanoparticles. Later, stability studies are investigated through thermogravimetric analysis, temperature‐dependent photoluminescence, time‐dependent X‐ray diffraction, as well as X‐ray photoelectron spectroscopy. In an application, interestingly, these perovskites show high luminescence upon scratching on flexible conducting plates and on plain paper surface. These results suggest that the amino acid–ligated perovskite nanocrystals can be potential materials for optoelectronic application including light‐emitting diodes and imaging.  相似文献   

11.
X‐ray gas attenuators are used in high‐energy synchrotron beamlines as high‐pass filters to reduce the incident power on downstream optical elements. The absorption of the X‐ray beam ionizes and heats up the gas, creating plasma around the beam path and hence temperature and density gradients between the center and the walls of the attenuator vessel. The objective of this work is to demonstrate experimentally the generation of plasma by the X‐ray beam and to investigate its spatial distribution by measuring some of its parameters, simultaneously with the X‐ray power absorption. The gases used in this study were argon and krypton between 13 and 530 mbar. The distribution of the 2p excited states of both gases was measured using optical emission spectroscopy, and the density of argon metastable atoms in the 1s5 state was deduced using tunable laser absorption spectroscopy. The amount of power absorbed was measured using calorimetry and X‐ray transmission. The results showed a plasma confined around the X‐ray beam path, its size determined mainly by the spatial dimensions of the X‐ray beam and not by the absorbed power or the gas pressure. In addition, the X‐ray absorption showed a hot central region at a temperature varying between 400 and 1100 K, depending on the incident beam power and on the gas used. The results show that the plasma generated by the X‐ray beam plays an essential role in the X‐ray absorption. Therefore, plasma processes must be taken into account in the design and modeling of gas attenuators.  相似文献   

12.
Au–Pt bimetallic nanoparticles have been synthesized through a one‐pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneous in situ measurement of X‐ray absorption spectroscopy (XAS) and UV–Vis spectroscopy at the energy‐dispersive EXAFS beamline (BL‐08) at Indus‐2 SRS at RRCAT, Indore, India. In situ XAS spectra, comprising both X‐ray near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) parts, have been measured simultaneously at the Au and Pt L3‐edges. While the XANES spectra of the precursors provide real‐time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core–shell‐type configuration of a bimetallic alloy in a one‐pot synthesis method. The core–shell‐type structure of the nanoparticles has also been confirmed by ex situ energy‐dispersive spectroscopy line‐scan and X‐ray photoelectron spectroscopy measurements with in situ ion etching on fully formed nanoparticles.  相似文献   

13.
In recent years, graphene‐incorporated micro‐/nanocomposites represent one of the hottest developing directions for the composite materials. However, a large number of active nanoparticles (NPs) are still in the unprotected state in most constructed graphene‐containing designs, which will seriously impair the effects of the graphene additives. Here, a fully protected Fe3O4‐based micro‐/nanocomposite (G/Fe3O4@C) is rationally developed by carbon‐boxing the common graphene/Fe3O4 microparticulates (G/Fe3O4). The processes and results of full protection are tracked in detail and characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, and nitrogen absorption–desorption isotherms, as well as scanning and transition electron microscopy. When used as the anode for lithium‐ion batteries, the fully protected G/Fe3O4@C exhibits the best lithium‐storage properties in terms of the highest rate capabilities and the longest cycle life compared to the common G/Fe3O4 composites and commercial Fe3O4 products. These much improved properties are mainly attributed to its novel structural features including complete protection of active Fe3O4 nanoparticles by the surface carbon box, a robust conductive network composed of nitrogen‐doped graphene nanosheets, ultra‐small Fe3O4 NPs of 4–5 nm, abundant mesopores to accommodate the volume variation during cycling, and micrometer‐sized secondary particles.  相似文献   

14.
Fluorinated Eu‐doped SnO2 nanostructures with tunable morphology (shuttle‐like and ring‐like) are prepared by a hydrothermal method, using NaF as the morphology controlling agent. X‐ray diffraction, field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and energy dispersive spectroscopy are used to characterize their phase, shape, lattice structure, composition, and element distribution. The data suggest that Eu3+ ions are uniformly embedded into SnO2 nanocrystallites either through substitution of Sn4+ ions or through formation of Eu‐F bonds, allowing for high‐level Eu3+ doping. Photoluminescence features such as transition intensity ratios and Stark splitting indicate diverse localization of Eu3+ ions in the SnO2 nanoparticles, either in the crystalline lattice or in the grain boundaries. Due to formation of Eu‐F and Sn‐F bonds, the fluorinated surface of SnO2 nanocrystallites efficiently inhibits the hydroxyl quenching effect, which accounts for their improved photoluminescence intensity.  相似文献   

15.
Surface‐enhanced Raman scattering (SERS) spectra of azo dyes (methyl orange and p‐methyl red) adsorbed on ZnO nanoparticles were observed. Hydrothermally synthesized ZnO nanoparticles were characterized by powder X‐ray diffraction and X‐ray photoelectron spectroscopy. The ZnO nanoparticle size, monitored with X‐ray diffraction, was tuned by calcination to optimize SERS intensities. The observed SERS effect of azo dyes adsorbed on ZnO can be ascribed to charge‐transfer resonance effect. Time‐dependent density functional theory was used to calculate the optical spectra and interpret the chemical enhancement observed in the experiment. The SERS enhancement factors for methyl red on ZnO were boosted by nearly four times and twice with O2 plasma and H2 plasma, respectively. However, plasma treatment showed no effect on the enhancement factors of methyl orange on ZnO. We conclude that plasma‐induced defect formation and band gap shift in ZnO and the coupling of energy levels between ZnO and azo dye molecules are responsible for the observed enhancement of SERS intensities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X‐ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal‐binding proteins. This is a new area of active research which has particular relevance to biology and for which X‐ray absorption spectroscopy is ideally suited. In the last three years, biological X‐ray absorption spectroscopy (BioXAS) has been included among the techniques used in post‐genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007–2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X‐ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins.  相似文献   

17.
研究了高电荷态离子129Xe28+轰击金属Au和Mo表面产生的特征X射线谱.实验结果表明,在入射离子的电荷态和能量相同的条件下,对于核电荷数较小、原子质量较轻的靶原子,只有其内壳层的电子才能被激发而产生X射线,而核电荷数较大、原子质量较重的靶原子只有其较外壳层的电子能被激发而产生X射线.特征X射线的产额随入射离子动能的增加而增加.  相似文献   

18.
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High‐resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)‐ and (100)‐oriented planes which stabilizes against further oxidation of the particles. X‐ray absorption spectroscopy (XANES) and X‐ray photoelectron spectroscopy (XPS) measurements at the O 1s‐edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milled for different times. XANES results reveal the presence of the +4 (SiO2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2p XPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub‐oxide, +1 (Si2O), +2 (SiO) and +3 (Si2O3), states are present. The analysis of the change in the sub‐oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.  相似文献   

19.
Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.  相似文献   

20.
A facile approach for shape‐tunable synthesis of bismuth fluoride nanoparticles is reported. The approach is based on the homogeneous precipitation of precursor materials in mixed solvents (H2O and ethylene glycol) and only ethylene glycol. The influencing factors on the morphology of the particles, i.e., solvent ratio, F/Bi ratio, and ethylenediaminetetraacetic acid, are studied in detail, and are schematically illustrated. The morphology, crystallinity, structure, and optical properties of the prepared samples are characterized by using a field‐emission scanning electron microscope, transmission electron microscope, X‐ray diffractometer, Fourier transform infrared spectrometer, and spectrofluorometer, respectively. The hollow sphere‐shaped nanoparticle doped with Eu3+ ions exhibit reddish orange emission under ultraviolet illumination due to the symmetric environment around the dopant ions. Subsequently, the effect of dopant concentration on the optical properties is also evaluated. The temperature‐dependent photoluminescence emission spectra reveal good thermal stability. The obtained results provide an efficient strategy for synthesizing the shape‐tunable nanoparticles with excellent optical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号