首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, three organosilica precursors functionalized with carbamate moieties were synthesized by condensing of 3‐isocyanatopropyltriethoxysilane and coupling regents of either hydroquinone (HQ), bisphenol A (BPA), or 1,1′‐bi‐2‐naphthol (BN). These organosilica precursors were covalently bonded in the framework of periodic mesoporous organosilicas by co‐condensation and hydrolysis with tetraethyl orthosilicate (TEOS) under hydrothermal treatment. The compositions and physical properties were characterized with FTIR, XRD, thermogravimetric/differential thermal analysis (TG/DTA), 29Si NMR, 13C NMR spectroscopies, SEM, TEM, and BET technologies. These characterizations suggest that three different structures were formed as the result of different sizes and compositions of the organosilica precursors. The three mesoporous organosilicas were applied as heterogeneous catalysts in the one‐pot cascade Knoevenagel and Michael cyclopropanic reactions for the synthesis of cyclopropanic derivatives and showed excellent activity and selectivity. The highest conversion was obtained with mesoporous catalyst (MC)‐HQ owing to its ordered mesostructure, highest surface area, and weakest stereo effect of the organic linking groups compared with MC‐BAP and MC‐BN. This methodology employed cheaper and more easily obtainable raw materials as reagents over the traditional alkene additive system and these heterogeneous catalysts exhibit superior performance and recyclability than typical homogeneous organic catalysts.  相似文献   

2.
通过氯化和胺化等手段对有序介孔聚合物材料(FDU-16)进行功能化, 成功地将胺基引入到介孔聚合物骨架中, 制备出新型有序介孔固体碱催化材料. X射线衍射(XRD)、 氮气吸附-脱附及透射电子显微镜(TEM)表征结果表明, 功能化后的固体碱材料依然保持高度有序性; 红外表征结果表明, 大量的胺基被引入到材料的骨架中. 在Knoevenagel缩合中, 这种新型有序介孔固体碱材料表现出比功能化的介孔二氧化硅等材料更高的催化活性, 这主要归因于其具有较高的比表面积、较强的碱性以及较多的活性中心.  相似文献   

3.
Assisted by a new dissolution procedure, dicyandiamide (DCDA), an environmentally benign and cheap precursor, has been employed for the synthesis of mesoporous carbon nitride (CN) materials through a nanocasting approach. The synthesized mesoporous materials possessed high specific surface areas (269–715 m2 g?1) with narrow pore‐size distributions (about 5 nm) and faithfully replicated the mesostructures of the SBA‐15 and FDU‐12 templates. Several characterization techniques, including XRD, SAXS, TEM, Raman and FTIR spectroscopy, XPS, and CO2‐TPD, were used to analyze the physicochemical properties of these materials and the results showed that the mesoporous CND materials had graphitic‐like structures and consisted of CN heterocycles, as well as amino groups. In a series of Knoevenagel condensation reactions, as exemplified by the reaction of various aldehydes and nitriles, these mesoporous CND materials demonstrated high and stable catalytic activities, owing to an abundance of basic sites.  相似文献   

4.
A type of multifunctional periodic mesoporous organosilica supported dual imidazolium ionic liquids PMO-IL-anion have been designed and prepared, characterized and evaluated as heterogeneous catalysts for the Knoevenagel condensation. The as-fabricated supported ionic liquids show good catalytic performances in the Knoevenagel condensation at room temperature, especially the supported ionic liquids PMO-IL-NTf2 and PMO-IL-PF6, based on a synergetic effect between the Lewis-base-type sites of dual functionalized imidazolium ionic liquids and active sites of periodic mesoporous organosilica. The best catalytic performance over PMO-IL-NTf2 was observed with excellent yields of 93~99% in a short time of 20~30 min. In addition, the heterogeneous catalyst offers simple operation for recovery and the recycling test showed that it could be reused for five times without significant loss of catalytic activity, thus making this process economical and environmental-friendly.  相似文献   

5.
Acid–base bifunctional mesoporous silica nanoparticles (MSN) were prepared by a one‐step synthesis by co‐condensation of tetraethoxysilane (TEOS) and silanes possessing amino and/or sulfonic acid groups. Both the functionality and morphology of the particles can be controlled. The grafted functional groups were characterized by using solid‐state 29Si and 13C cross‐polarization/magic angle spinning (CP/MAS) NMR spectroscopy, thermal analysis, and elemental analysis, whereas the structural and the morphological features of the materials were evaluated by using XRD and N2 adsorption–desorption analyses, and SEM imaging. The catalytic activities of the mono‐ and bifunctional mesoporous hybrid materials were evaluated in carbon–carbon coupling reactions like the nitroaldol reaction and the one‐pot deacetalization–nitroaldol and deacetalization–aldol reactions. Among all the catalysts evaluated, the bifunctional sample containing amine and sulfonic acid groups (MSN–NNH2–SO3H) showed excellent catalytic activity, whereas the homogeneous catalysts were unable to initiate the reaction due to their mutual neutralization in solution. Therefore a cooperative acid–base activation is envisaged for the carbon–carbon coupling reactions.  相似文献   

6.
Four amine functionalized mesoporous catalysts were synthesized by grafting primary, dualistic and two secondary amines onto the channel walls of mesoporous silica, MCM-41. We examined the effects of organoamine loading amount on the acid-base synergism of the catalysts in the self-condensation reaction of n-butanal, a Knoevenagel condensation and a Henry reaction. We observed the balance of the amine and residual silanol amounts is crucial to the catalytic performances of the functionalized mesoporous catalysts. An optimum organoamine loading amount exists, which is dependent on the organoamine type. There is little difference in the optimum organoamine loading amount between different reactions. The secondary organoamine functionalized MCM-41 exhibits the best catalytic performance in the experimental range.  相似文献   

7.
Recently, acid–base bifunctional catalysts have been considered due to their abilities, such as the simultaneous activation of electrophilic and nucleophilic species and their high importance in organic syntheses. However, the synthesis of acid–base catalysts is problematic due to the neutralization of acidic and basic groups. This work reports a facial approach to solve this problem via the synthesis of a novel bifunctional polymer using inexpensive materials and easy methods. In this way, at the first step, heterogeneous poly (styrene sulfonic acid‐n‐vinylimidazole) containing pentaerythritol tetra‐(3‐mercaptopropionate) (PETMP) and trimethylolpropane trimethacrylate (TMPTMA) cross‐linkers were synthesized in the pores of a mesoporous silica structure using click reaction as a novel bifunctional acid–base catalyst. After that, Ni‐Pd nanoparticles supported on poly (styrenesulfonic acid‐n‐vinylimidazole)/KIT‐6 as a novel trifunctional heterogeneous acid–base‐metal catalyst was prepared. The prepared catalysts were characterized by various techniques like FT‐IR, TGA, ICP‐AES, DRS‐UV, TEM, FE‐SEM, EDS‐Mapping, and XRD. The synthesized catalysts were efficiently used as bifunctional/trifunctional catalysts for one‐pot, deacetalization‐Knoevenagel condensation and one‐pot, three‐step and a sequential reaction containing deacetalization‐Knoevenagel condensation‐reduction reaction. It is important to note that the synthesized catalyst showing high chemo‐selectivity for the reduction of nitro group, alkenyl double bond and ester group in the presence of nitrile. Moreover, it was found that the different nanoparticles including Ni, Pd, and alloyed Ni‐Pd showing different chemo‐selectivity and catalytic activity in the reaction.  相似文献   

8.
Polyvinyl amine coated Fe3O4@SiO2 composite microspheres with a core-shell structure were prepared and employed as a magnetic catalyst for Knoevenagel condensation under mild conditions. The catalyst can be readily recovered using a magnet and reused several times without loss in activity or selectivity. The performance of the magnetic base catalyst was compared with that of polyvinyl amine functionalized mesoporous SBA-15, which showed that the magnetic nanoparticles gave improved reaction rate and yield.  相似文献   

9.
The development of hierarchical macro‐ or mesoporous zeolites is essential in zeolite synthesis because the size of the micropores limits mass transport and their use as industrial catalysts for bulky molecules. Although major breakthroughs have been achieved, fabricating crystallographically ordered mesoporous zeolites using a templating strategy is still an unsolved challenge. This minireview highlights our recent efforts on the self‐assembly of amphiphilic molecules to obtain ordered hierarchical MFI zeolites by introducing aromatic groups into the hydrophobic tail of the amphiphilic molecules. Owing to the geometric matching between the self‐assembled aromatic tails and the MFI framework, a) single‐crystalline mesostructured zeolite nanosheets (SCZNs), b) SCZNs with a 90° rotational intergrowth structure, c) a hierarchical MFI zeolite with a two‐dimensional square P4mm mesostructure, and d) a single‐crystalline mesoporous ZSM‐5 with three‐dimensional pores and sheetlike mesopores layered along the a‐axis were successfully synthesized.  相似文献   

10.
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.  相似文献   

11.
Large-sized, optical transparent mesostructured Brij 56/silica monolith has been fabricated using a lyotropic liquid crystal of Brij 56 (C16EO10) as a template and TMOS as a silica source, combined with a optimizing sol-gel process and a hydrothermal aging process. By programmed temperature drying and calcinations, translucent mesoporous silica monolith with two-dimensional hexagonal structure (P6mm) has bee obtained. The ordered mesoporous silica monoliths have been characterized by small-angle X-ray diffraction, transmission electron microscopy (TEM), and nitrogen adsorption, which shows that the materials have a highly ordered two-dimensional hexagonal mesostructure with the high specific surface area of 837 m2 · g−1 and narrow pore distribution with a mean BJH pore diameter of 2.73 nm. Based on calculations and differential scanning calorimetry and thermogravimetric analyses, the action mechanism of the hydrothermal aging process has been proposed: the 100°C hydrothermal conditions and autogenous 2.3 atm pressure promote the condensation and dehydration of silanol groups, with the result that cross-linking degree, the flaws and moisture content in gels are reduced notably. Those processes guarantee the integrity of gels in the following drying process.  相似文献   

12.
Immobilized nickel catalysts SBA*‐ L ‐x/Ni ( L =bis(2‐pyridylmethyl)(1H‐1,2,3‐triazol‐4‐ylmethyl)amine) with various ligand densities ( L content (x)=0.5, 1, 2, 4 mol % Si) have been prepared from azidopropyl‐functionalized mesoporous silicas SBA‐N3x. Related homogeneous ligand LtBu and its NiII complexes, [Ni( LtBu )(OAc)2(H2O)] ( LtBu /Ni) and [Ni( LtBu )2]BF4 (2 LtBu /Ni), have been synthesized. The L /Ni ratio (0.9–1.7:1) in SBA*‐ L ‐x/Ni suggests the formation of an inert [Ni L 2] site on the surface at higher ligand loadings. SBA*‐ L ‐x/Ni has been applied to the catalytic oxidation of cyclohexane with m‐chloroperbenzoic acid (mCPBA). The catalyst with the lowest loading shows high activity in its initial use as the homogeneous LtBu /Ni catalyst, with some metal leaching. As the ligand loading increases, the activity and Ni leaching are suppressed. The importance of site‐density control for the development of immobilized catalysts has been demonstrated.  相似文献   

13.
Carbon dots (CDs) have attracted increasing attention in applications such as bio‐imaging, sensors, catalysis, and drug delivery. However, unlike metallic and semiconductor nanoparticles, the transfer of CDs between polar and non‐polar phases is little understood. A class of amine‐terminated CDs is developed and their phase transfer behavior has been investigated. It is found that these CDs can reversibly transfer between aqueous and organic solvents by alternatively bubbling and removing CO2 at atmospheric pressure. The mechanism of such CO2‐switched phase transfer involves reversible acid–base reaction of amine‐terminated CDs with CO2 and the reversible formation of hydrophilic ammonium salts. By using the CDs as catalysts, the phase transfer is applied in the Knoevenagel reaction for efficient homogeneous reaction, heterogeneous separation, and recycling of the catalysts.  相似文献   

14.
The design and synthesis of 3D covalent organic frameworks (COFs) have been considered a challenge, and the demonstrated applications of 3D COFs have so far been limited to gas adsorption. Herein we describe the design and synthesis of two new 3D microporous base‐functionalized COFs, termed BF‐COF‐1 and BF‐COF‐2, by the use of a tetrahedral alkyl amine, 1,3,5,7‐tetraaminoadamantane (TAA), combined with 1,3,5‐triformylbenzene (TFB) or triformylphloroglucinol (TFP). As catalysts, both BF‐COFs showed remarkable conversion (96 % for BF‐COF‐1 and 98 % for BF‐COF‐2), high size selectivity, and good recyclability in base‐catalyzed Knoevenagel condensation reactions. This study suggests that porous functionalized 3D COFs could be a promising new class of shape‐selective catalysts.  相似文献   

15.
Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.  相似文献   

16.
Supported nano‐amorphous alloy NiB/MCM‐41 catalysts were prepared by chemical reductive deposition. The as‐prepared catalysts were characterized by XRD, SEM, TEM, EDAX, ICP, and N2 adsorption‐desorption. The amorphous alloy structure of NiB active sites, mesoporous structure of catalysts, and higher BET area have been proved by the experiments. The catalysts have given excellent catalytic activity and selectivity in the production of 3‐(N‐benzyl)‐amino‐4‐methoxy‐ acetanilide from 3‐amino‐4‐methoxy‐acetanilide and benzaldehyde.  相似文献   

17.
Ordered mesoporous titania thin films were synthesized by evaporation induced self‐assembly process in the presence of Pluronic block copolymers P123 (EO20‐PO70‐EO20). The influence of several experimental parameters, including aging humidity, aging temperature, substrate properties and methods for organic templates removal, on the mesostructure of titania thin films was investigated in details. The mesoporous titania thin film supported Pt catalyst was prepared, and its methanol catalytic combustion performance was studied. The results showed that mesoporous titania thin film is an active support for catalyst. Mesoporous titania thin film supported platinum catalysts yields 70% methanol conversion at room temperature and 100% conversion at 100 °C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, three ordered mesoporous carbons (OMCs) with different structural parameters were synthesized by a simple variation of the hydrothermal temperature of the silica templates (SBA‐15). X‐ray diffraction and nitrogen adsorption‐desorption results show these OMCs exhibit an ordered 2D hexagonal mesostructure with tunable pore diameter. OMC‐modified glassy carbon electrodes exhibit efficient electrocatalytic reactivity toward oxidation of morphine (MO). The amperometric detection of MO in pH 7.0 phosphate buffered saline at +0.39 V versus Ag/AgCl is the lowest potential reported to‐date. A linear range from 0.2 to 197.6 μM and a detection limit of 0.03 μM MO were obtained.  相似文献   

19.
A functionalized periodic mesoporous organosilica with incorporated chiral bis(cyclohexyldiamine)‐based NiII complexes within the silica framework was developed by the co‐condensation of (1R,2R)‐cyclohexyldiamine‐derived silane and ethylene‐bridge silane, followed by the complexation of NiBr2 in the presence of (1R,2R)‐N,N′‐dibenzylcyclohexyldiamine. Structural characterization by XRD, nitrogen sorption, and TEM disclosed its orderly mesostructure, and FTIR and solid‐state NMR spectroscopy demonstrated the incorporation of well‐defined single‐site bis(cyclohexyldiamine)‐based NiII active centers within periodic mesoporous organosilica. As a chiral heterogeneous catalyst, this functionalized periodic mesoporous organosilica showed high catalytic activity and excellent enantioselectivity in the asymmetric Michael addition of 1,3‐dicarbonyl compounds to nitroalkenes, comparable to those with homogeneous catalysts. In particular, this heterogeneous catalyst could be recovered easily and reused repeatedly up to nine times without obviously affecting its enantioselectivity, thus showing good potential for industrial applications.  相似文献   

20.
Well‐ordered periodic mesoporous organosilicas (PMOs) functionalized with high contents of carboxylic acid (?COOH) groups, up to 85 mol % based on silica, were synthesized by co‐condensation of 1,2‐bis(triethoxysilyl)ethane (BTEE) and carboxyethylsilanetriol sodium salt (CES) under acidic conditions by using alkyl poly(oxyethylene) surfactant Brij 76 as a structure‐directing agent. A variety of techniques including powder X‐ray diffraction (XRD), nitrogen adsorption/desorption, Fourier‐transformed infrared (FTIR), transmission electron microscopy (TEM), 13C‐ and 29Si solid‐state nuclear magnetic resonance (NMR) were used to characterize the products. The materials thus obtained were used as an effective support to synthesize metal nanoparticles (Ag and Pt) within the channel of 2D hexagonal mesostructure of PMOs. The size and distribution of the nanoparticles were observed to be highly dependent on the interaction between the carboxylic acid functionalized group and the metal precursors. The size of Pt nanoparticles reduced from 3.6 to 2.5 nm and that of Ag nanoparticles reduced from 5.3 to 3.4 nm with the increase in the ?COOH loading from 10 to 50 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号