首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Highly luminescent CdSeS nanocrystals (quantum efficiency up to 85%), showing tunable luminescence properties from red to blue region with narrow band edge (FWHM = 34 nm), were synthesized by one-step addition of Se and S source mixture into the Cd precursor solution at elevated temperature, and the resulting nanocrystals were successfully embedded in a traditional OLED structure to give spectrally clean and narrow electroluminescence emission at identical positions of the photoluminescence spectrum.  相似文献   

2.
Using colloidal solutions of ZnS-shell indium phosphide quantum dots with two average sizes of 2.1 and 3.0 nm and a size distribution variance of 10%, it has been shown that the luminescence and the luminescence excitation spectra of the colloidal quantum dots substantially depend on the wavelength of exciting light and the detection wavelength, respectively, with both the relationships being nonlinear in character, which may indicate the bimodal type of the size distribution function. Similar measurements for CdSe colloidal quantum dots with an average particle size of dav = 2.5 nm and a variance of 6% have shown that the effect of dependence of the luminescence peak position on the excitation wavelength is manifested to a much lesser extent.  相似文献   

3.
Thiol-stabilized PbS quantum dots (QDs) with dimensions 3-5 nm capped with a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were coUoidally prepared at room temperature. Room temperature photoluminescence quantum efficiency of freshly prepared PbS QDs (7%-11%) remained higher than 5% upon aging for three weeks when the nanocrystals (NCs) were stored in an ice-bath in the dark, and higher than 5%for at least five weeks when extra DTG ligands were introduced into the nanocrystal solution followed by stirring every two weeks. Poly(N-isopropyl acrylamide) (PNIPAM) microgels were produced via precipitation polymerization with dimensions of ca. 230 nm and polydispersity of 3-5%. Incorporation of PbS QDs into PNIPAM microgels indicated that PbS can be incorporated into the interior of microgel particles and not at the microgel interface. The combination of reasonable room temperature quantum efficiency and strong, efficient luminescence covering the 1.3-1.55 μm telecommunication window makes these nanoparticles promising materials in optical devices and telecommunications.  相似文献   

4.
以巯基丙酸(MPA)为稳定剂, 利用微波辐射加热方法制备了水溶性的Cu掺杂的ZnS纳米晶. 通过改变微波条件, 可以在460~572 nm之间实现对ZnS∶Cu纳米晶发射峰位的连续调控. 通过XRD、 UV-Vis、荧光及荧光衰减对ZnS∶Cu纳米晶的结构和发光性质进行了详细探索, 并利用时间分辨荧光光谱对其发光机理进行了初步研究.  相似文献   

5.
Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000 nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990 nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850 nm.  相似文献   

6.
Evidently enhanced red emission efficiency from the solid state of tetraphenylporphyrin derivative was achieved by modification with tetraphenylethene units.  相似文献   

7.
ZnSe;Cu纳米晶/聚电解质多层膜制备和结构研究   总被引:6,自引:0,他引:6  
采用分子沉积方法制备了ZnSe;Cu纳米晶/聚电解质多层膜,通过X射线光电子能谱(XPS)和透射电镜(TEM)等方法对薄膜的组成及结构进行了表征.XPS结果证实了回流处理对ZnSe;Cu微粒的表面结构以及铜离子价态的影响,从而很好地解释了经表面修饰后,微粒荧光增强的现象.TEM结果确定ZnSe;Cu的平均尺寸为3nm.X射线粉末衍射结果进一步确认ZnSe;Cu具有纤锌矿晶体结构.  相似文献   

8.
Water-soluble aggregation-resistance nanocomposites based on silver selenide quantum dots with an average particle size of 11.4–12.7 nm and the natural polysaccharide galactomannan were synthesized for the first time using a simple environmentally benign method for the generation of highly reactive selenide ions acting as selenating agent. The obtained nanocomposites showed luminescence in the transparency range of biological tissues (λ ~705 nm) and were characterized in detail by X-ray powder diffraction, transmission electron microscopy, and absorption and luminescence spectroscopy.  相似文献   

9.
Highly luminescent silicon nanocrystals with discrete optical transitions.   总被引:3,自引:0,他引:3  
A new synthetic method was developed to produce robust, highly crystalline, organic-monolayer passivated silicon (Si) nanocrystals in a supercritical fluid. By thermally degrading the Si precursor, diphenylsilane, in the presence of octanol at 500 degrees C and 345 bar, relatively size-monodisperse sterically stabilized Si nanocrystals ranging from 15 to 40 A in diameter could be obtained in significant quantities. Octanol binds to the Si nanocrystal surface through an alkoxide linkage and provides steric stabilization through the hydrocarbon chain. The absorbance and photoluminescence excitation (PLE) spectra of the nanocrystals exhibit a significant blue shift in optical properties from the bulk band gap energy of 1.2 eV due to quantum confinement effects. The stable Si clusters show efficient blue (15 A) or green (25-40 A) band-edge photoemission with luminescence quantum yields up to 23% at room temperature, and electronic structure characteristic of a predominantly indirect transition, despite the extremely small particle size. The smallest nanocrystals, 15 A in diameter, exhibit discrete optical transitions, characteristic of quantum confinement effects for crystalline nanocrystals with a narrow size distribution.  相似文献   

10.
Rodlike, olivelike, pineapplelike, and particlelike nanocrystals of theYVO4:Eu (5 at. % Eu) were synthesized by a hydrothermal reaction with different conditions, respectively. The rodlike nanocrystal has a rectangular cross-section with about 35 x 60 nm2 and a length of about 220 nm. The olivelike nanocrystal has an equatorial diameter of approximately 40 nm and a length of approximately 200 nm. The pineapplelike nanocrystal with an equatorial diameter of approximately 200 nm and a length of approximately 300 nm, is a superstructure consisting of self-organized nanorods with a diameter of approximately 20 nm and a length of approximately 50 nm. The particlelike nanocrystals show globular and polyhedral shape with a diameter of approximately 50 nm. Their UV-vis absorption peaks are at 305, 308, 285, and 280 nm, respectively, and there is such a trend that the absorption peaks shift to higher energy as the size of the particles decreases. Compared with other-shape nanocrystals, the luminescence intensity of the olivelike nanocrystals is obviously enhanced. It suggests that we could obtain the function-improved materials by tailoring the size and shape of theYVO4:Eu nanostructures.  相似文献   

11.
High-quality Zn(x)Cd(1-x)Se nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals. With increasing Zn content, a composition-tunable emission across most of the visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. The photoluminescence (PL) properties for the obtained Zn(x)Cd(1-x)Se nanocrystals (PL efficiency of 70-85%, fwhm = 22-30 nm) are comparable to those for the best reported CdSe-based QDs. In particular, they also have good PL properties in the blue spectral range. Moreover, the alloy nanocrystals can retain their high luminescence (PL efficiency of over 40%) when dispersed in aqueous solutions and maintain a symmetric peak shape and spectral position under rigorous experimental conditions. A rapid alloying process was observed at a temperature higher than "alloying point". The mechanism of the high luminescence efficiency and stability of Zn(x)Cd(1-x)Se nanocrystals is explored.  相似文献   

12.
采用水热法低温(200 ℃)处理12 h直接制备ZnS∶Cu, Al纳米晶, 并探讨其光致(PL)和X射线激发(XEL)光谱特性及后续退火处理的影响. XRD和TEM分析表明, 水热法直接制备的ZnS∶Cu, Al粒径约为15 nm, 尺寸分布窄, 分散性好, 具有纯立方相的球形结构. 其PL和XEL光谱均为宽带谱, n(Cu)/n(Zn)=3×10-4和n(Cu)/n(Al)= 0.5时PL和XEL光谱强度最大, XEL峰值在470 nm处. 在此条件下, 水热处理3 h直接合成的纳米晶在氩气保护下于800 ℃退火1 h后样品的XEL发光进一步增强. XEL光谱强度约是退火前样品的8倍, 此时峰值波长在520 nm, 团聚形成径为200~500 nm的类球形六方相结构. 发光强度增强, 但粒径很小, 对提高成像系统分辨率非常有意义. 通过比较样品的XEL和PL光谱, 讨论了XEL和PL光谱的发光机理和激发机制及退火对其特性的影响.  相似文献   

13.
Suspension of micrometer-sized 1,4-bis(4-methylstyryl)benzene(p-MSB) was converted into colloidal nanocrystal solution by irradiation with an femtosecond laser(800 nm, 1 kHz). The prepared nanocrystals were rectangular with ca. 100 nm in size. The same crystal structure as that of bulk crystals was confirmed by X-ray diffraction measurement. UV-Vis spectra and emission spectra of the nanoparticle dispersions in dichloromethane(poor solvent) were examined. The nanocrystal exhibits large quantum yield(89%). The nonlinear optical properties of the nanocrystals were further studied by Z-scan technique with femtosecond laser duration of 120 fs at a wavelength of 800 nm. The results show that the nanocrystals exhibit strong nonlinear absorption.  相似文献   

14.
By thermal decomposition in the presence only of oleylamine, sub-10 nm hexagonal NaLuF(4)-based nanocrystals codoped with Gd(3+), Yb(3+), and Er(3+) (or Tm(3+)) have been successfully synthesized. Sub-10 nm β-NaLuF(4): 24 mol % Gd(3+), 20 mol % Yb(3+), 1 mol % Tm(3+) nanocrystals display bright upconversion luminescence (UCL) with a quantum yield of 0.47 ± 0.06% under continuous-wave excitation at 980 nm. Furthermore, through the use of β-NaLuF(4):Gd(3+),Yb(3+),Tm(3+) nanocrystals as a luminescent label, the detection limit of <50 nanocrystal-labeled cells was achieved for whole-body photoluminescent imaging of a small animal (mouse), and high-contrast UCL imaging of a whole-body black mouse with a penetration depth of ~2 cm was achieved.  相似文献   

15.
Water-dispersible Amdex-CdSe nanoparticle complexes with sufficient luminescence intensity were prepared at room temperature by rapidly mixing aqueous solutions of either sodium selenide or selenourea with those of cadmium chloride in the presence of amino-derivatized polysaccharides (Amdex) as stabilizing agent. It was shown that the size of CdSe crystallites decreased with increasing content of the polymer in the precipitation process. When present in a sufficient amount, Amdex was found to be an effective stabilizing and capping agent, producing CdSe nanocrystals of weak-to-medium luminescence intensity (maximum room temperature quantum yields of 15-16%). Furthermore, Amdex has proven to be an effective protective agent against photochemical degradation.  相似文献   

16.
A scalable method for controlled synthesis of luminescent compound semiconductor nanocrystals (quantum dots) using microemulsion-gas contacting at room temperature is reported. The technique exploits the dispersed phase of a microemulsion to form numerous identical nanoreactors. ZnSe quantum dots were synthesized by reacting hydrogen selenide gas with diethylzinc dissolved in the heptane nanodroplets of a microemulsion formed by self-assembly of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) amphiphilic block copolymer in formamide. A single nanocrystal is grown in each nanodroplet, thus allowing good control of particle size by manipulation of the initial diethylzinc concentration in the heptane. The ZnSe nanocrystals exhibit size-dependent luminescence and excellent photostability.  相似文献   

17.
We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.  相似文献   

18.
采用室温合成法制备出一系列具有高发光效率和多色发光的CsPbX3钙钛矿量子点(PQDs),反应全过程快速简便,且通过调节不同的卤素组成(Cl,Br,I)可以实现CsPbX3 PQD的多色发光。 通过表征证明,CsPbX3 PQDs呈立方晶型,平均粒径约为10 nm,发射光谱覆盖可见光波长范围为410~630 nm,半峰宽14~38 nm,荧光量子产率10%~90%。 最后将CsPbX3 PQDs应用于发光二极管(LED)器件的制备中,在恒定电压下工作时,能保持LED器件的发光颜色、强度和颜色坐标不变。  相似文献   

19.
Aqueous suspensions of highly luminescent Eu3+ chelate nanoparticles are prepared by a novel reprecipitation-encapsulation method. An alkyl alkoxysilane encapsulation agent is included during the nanoparticle formation process, forming a nanoparticle encapsulation layer that inhibits aggregation as evidenced by UV-vis spectroscopy and atomic force microscopy. In addition, the encapsulated nanoparticles exhibit a small size (10 nm), intense luminescence, and excellent photostability. We estimate that the molar extinction coefficients of the approximately 10 nm particles are approximately 5.0x10(7) M-1 cm-1 with a luminescence quantum yield of 6%, indicating a luminescence brightness many times larger than that of conventional fluorescent dyes and comparable to that of colloidal semiconductor quantum dots. The small size, high brightness, highly red-shifted luminescence, and long luminescence lifetimes of the nanoparticles are of interest for luminescence labeling and sensing applications.  相似文献   

20.
Ag^+ -doped ZnS nanocrystals surface-capped with thiourea (expressed as ZnS: Ag/thiourea) were synthesized through sol-gel method with thiourea as a surface modifier and characterized by X-ray diffraction(XRD), transmission electron microscope(TEM), X-ray fluorescence spectrum(XRF), infrared spectrum (IR), UV-Vis absorption spectrum( UV-Vis), and photoluminescence spectrum(PL). The results show that Ag^+ ions are doped in ZnS nanocrystals, and the sulfur atoms in thiourea molecules coordinate with metal ions on the surface of the nanocrystals. The spherical ZnS: Ag/thiourea nanocrystals with an average diameter of 5 nm have good fluorescent characteristics, and therefore have great potential for use in molecular assembly and novel luminescence materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号