首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The electron paramagnetic resonance (EPR) of Mn2+ impurities in sodium azide (NaN3) single crystals has been measured between 178 K and 300 K in order to study the transition between the monoclinic low temperature α phase and the trigonal high temperature β phase of NaN3. The analysis of the EPR spectra yields the parameters of the zero-field splitting (zfs) in the spin Hamilton operatorD(S ξ 2 ?1/3S(S+1))+E(S ξ 2 ?S η 2 ) associated with any of four different pair states of a Mn2+ ion and a cation vacancy. The obtained zfs, which is temperature dependent in α-NaN3 and constant in β-NaN3, is consistent with a continuous phase transition atT c =292 K. Using a point charge model for the crystal potential the zfs parameters are related to the lattice structure in the vicinity of the Mn2+ ion. The zfs is not consistent with the temperature dependent atomic displacements in α-NaN3 obtained previously from an X-ray diffraction study. The critical exponents of the zfs parameters, derived in the temperature range 1 K<T c ?T<114 K, differ from the critical exponents of atomic displacements in α-NaN3.  相似文献   

2.
A study of the effect of hydrostatic pressure and temperature on the EPR spectrum of the Mn2+ ion in Zn(BF4)2 · 6H2O is reported. The break in the temperature dependence of the b 2 0 parameter at 196 K is evidence of the existence of a phase transition accompanied by a change in the thermal expansion coefficient. It is shown that pressure considerably affects the spectral parameters by reducing the axial parameter b 2 0 and increasing the cubic one, b 4 0 . At 9 kbar, the b 2 0 parameter is temperature independent. A comparison of the pressure dependences of the spectra of Zn(BF4)2 · 6H2O, ZnSiF6 · 6H2O, ZnTiF6 · 6H2O, and MgSiF2 · 6H2O crystals suggests equal hydrogen-bond lengths in these compounds. A ligand hyperfine structure has been detected, which originates from the Zeeman interaction with the proton nuclei surrounding Mn2+ and manifests itself in the formation of satellites at each EPR line, their separation being proportional to the magnetic field. The nonlinear pressure dependence of the linewidth is related to the structural features of the crystal under study.  相似文献   

3.
Electron paramagnetic resonance (EPR) studies have been carried out on Mn2+ ions doped in nickel maleate tetrahydrate single crystals in the temperature range 103-413 K on X-band frequency. The EPR spectrum at room temperature exhibits a group of five fine structure transitions each splits into six hyperfine components. Angular variation studies reveal the presence of a single site and it is found that Mn2+ ions enter the lattice substitutionally. From the observed EPR spectrum, the spin-Hamiltonian parameters have been evaluated. The variation of zero-field splitting parameter (D) with temperature is measured. The observed EPR spectra exhibit a large anisotropy in the widths of Mn2+ resonance lines. The widths of Mn2+ resonance lines increase with the Zeeman field intensity and these observations have been discussed in detail. The infrared spectrum exhibits bands characteristic of the carboxylic acid salts.  相似文献   

4.
The ground state of Gd3+ ions substituting for trivalent europium in the EuAl3(BO3)4 single crystal was studied by electron paramagnetic resonance (EPR) over the temperature range of 300-4.2 K and at pressures up to 9 kbar. The EPR spectra were analysed using the spin Hamiltonian of axial symmetry. The following parameters are reported: g=1.981±0.002, b20=280.18±0.12, b40=−12.95±0.08 and b60=0.61±0.12 (at Т=298 K). The distortions of the nearest environment of Gd3+ ion were analysed within the framework of the superposition model of crystal field.  相似文献   

5.
This paper reports an EPR study of the effect of hydrostatic pressure (up to 10 kbar) and temperature (300, 77, and 4.2 K) on the spin Hamiltonian parameters of the Eu2+ ion in a SrCl2 cubic crystal. It is found that the b 4 parameter is related by a power law to the distance from the Cl?1 ligand (b 4R ?13.5). The pressure and temperature are shown not to be equivalent thermodynamic parameters. Lattice vibrations contribute noticeably to the initial S-ion splitting.  相似文献   

6.
The EPR spectrum of Mn2+ in CaMoO4, CdMoO4, CaWO4 and SrWO4 has been investigated in the temperature range from 4.2–380 K. Results are given for the Spin-Hamiltonian parametersb 2 0 andb 4 0 . They are completed by data forb 2 0 of Mn2+ in SrMoO4 [1] and discussed with respect to resonant vibrations.  相似文献   

7.
The EPR spectra of Cu2+ in Sodium hydrogen oxalate monohydrate, NaHC2O4.H2O(SHOMH hereafter) single crystal was studied at room temperature. The angular variation of EPR spectra showed that the Cu2+ ion in SHOMH single crystal substitutes with Na+ monovalent cation together with a monovalent vacancy to compensate oxygen in the crystal. Since the crystal symmetry is triclinic, only one site is observed in the EPR spectra in three perpendicular axis. The spin Hamiltonian parameters were obtained, and the ground state wave function of Cu2+ ion in the lattice was constructed.  相似文献   

8.
Crystals of a proper ferroelastic K3Na(CrO4)2 containing molecular impurity ions MnO 4 2? are studied using electron paramagnetic resonance (EPR) and optical spectroscopy. The EPR spectrum of the Mn6+ ion contained in the molecular impurity ion MnO 4 2? is identified at low temperatures (T ≤ 20 K). The intensity of this spectrum decreases unusually fast as the temperature increases. A broad IR luminescence band with a vibronic structure well resolved at a temperature of 8 K is revealed. Theoretical treatment of the Mn6+ ion involved in the molecular impurity ions MnO 4 2? of the K3Na(CrO4)2 ferroelastic crystal suggests that an important role in this case is played by the pseudo-Jahn-Teller. The pseudo-Jahn-Teller effect offers an explanation for the appearance of a fine structure in the vibronic replicas in the luminescence spectrum, on the one hand, and accounts for the fast decrease in the intensity of the EPR spectrum of K3Na(CrO4)2: MnO 4 2? with increasing temperature, on the other.  相似文献   

9.
This work reports evidence of the induced migration of Mn2+ ions in Cd(1?x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions.  相似文献   

10.
The quantitative relationship between the electron paramagnetic resonance (EPR) parameters D,g,g and the local structure parameters of Cr3+ ion in KZnF3 crystals is established. The local structure for Cr3+ paramagnetic center in KZnF3:Cr3+ crystal has been determined from EPR parameters of Cr3+ ion. This work shows that the trigonal crystal field of Cr3+ ion in KZnF3 crystals comes from following two origins: (1) the nearest-neighbor K+ vacancy caused by the charge compensation in the [1 1 1]-axis direction; and (2) the lattice distortions of the nearest-neighbor fluorine coordination caused by the K+ vacancy and the differences in mass, charge, and radius between Cr3+ ion and Zn2+ ion. The unified calculation of the EPR zero-field splitting and g factors, taking into account the K+ vacancy and the lattice distortions, has been carried out on the basis of the complete diagonalization procedure and the superposition crystal-field model, all calculation results are in excellent agreement with the experimental data. Although the main source of the trigonal crystal field comes from the K+ vacancy caused by the charge compensation, the contribution of the lattice distortion cannot be neglected.  相似文献   

11.
Electron paramagnetic resonance (EPR) and magnetostriction of the Cu2MnBO5 single crystal have been studied. The EPR spectrum consists of a single Lorentzian line due to the exchange-coupled system of spins of Cu2+ and Mn3+ ions. It has been established experimentally that the g-factor in the paramagnetic region is strongly anisotropic and anomalously small, which is not typical of the exchange-coupled system of spins of Cu2+ and Mn3+ ions. At a temperature of 150 K, the g-factors along the crystallographic a, b, and c axes are 2.04, 1.96, and 1.87, respectively. Such small effective g-factor values can be due to the effect of the anisotropic Dzyaloshinskii–Moriya exchange interaction between the spins of Cu2+ and Mn3+ ions directed along the a axis. The presence of two Cu2+ and Mn3+ Jahn–Teller ions occupying four nonequivalent positions in the crystal is responsible for the absence of the inversion center. It is found that the behavior of the magnetostriction of Cu2MnBO5 is not typical of transition-metal crystals but is closer to the behavior of crystals containing rare-earth ions.  相似文献   

12.
The complete energy matrices for a d5configuration ion in a tetragonal ligand-field has been constructed on the basis of the complete set of basis of d5configuration (252 dimension), and the relationship between the low-symmetry EPR parameters b2 0 ,b4 0 and the local distortion parameters has been established based on the complete energy matrices. As an application, we have studied the EPR parameters and the local lattice structure of Mn2+ ion doped in tetragonal K2ZnF4 system. The calculation indicated that the local lattice structure around a tetragonal Mn2+ ion center has an expansion distortion. Simultaneously, the local lattice structure parameters R1 =2.0727 ?, R2 =2.0801 ? at room temperature (295 K) and R1 = 2.0439 ?, R2 =2.05478 ? at low temperature (4.2 K) are determined.  相似文献   

13.
A high-frequency (208 GHz) electron paramagnetic resonance (EPR) study on Mn3+ (3d4, S = 2) ions embedded in a MnMo6Se8 single crystal has been performed at 10 K. The experimental spectra reveal the presence of only one set of EPR lines from Mn3+ ions, whose magnetic axes are oriented along the crystal axes. The spin-Hamiltonian parameters are evaluated by the method of least-squares, fitting all the observed line positions simultaneously, for the three orthogonal orientations of the external magnetic field. The symmetry of the spin Hamiltonian at the site of the Mn3+ ions has been deduced from the EPR spectra.  相似文献   

14.
Electron paramagnetic resonance (EPR) evidence is presented for the radiation stabilization of pentavalent uranium in CaO matrix. From the theoretical predictions ofg value for U5+ in axial symmetries, it was concluded that U5+ at Ca2+ site is associated with a second neighbour charge compensating Ca2+ vacancy. EPR measurements also revealed the presence of Mn2+, Mn4+ and Cu2+ impurities in the samples. The thermal stability of U5+ was investigated using EPR and thermally stimulated luminescence (TSL) techniques. The TSL and EPR studies on gamma irradiated uranium doped calcium oxide samples had shown that the intense glow peak at 540 K is associated with the reduction in the intensity of EPR signal of U5+ ion around this temperature. This peak is associated with the process U5++hole→U6+*→U6++hv. The activation energy for this process was determined to be 1.4eV.  相似文献   

15.
Structural phase transition in Rb2CdCl4: Mn2+ single crystal has been found near 133 K by EPR, X-ray and optical methods. Octahedral tilt system in the low temperature phase corresponds to the symmetry change D174h → D182h or D174h → C62h.  相似文献   

16.
The elastic thermal-neutron scattering patterns of a La0.85Sr0.15MnO3 manganite orthorhombic single crystal are investigated in the temperature range 4.2–300 K. It is found that, in addition to the known ferromagnetic ordering (T C=240 K), this compound exhibits a ferromagnetic superstructure with the (010)2π/b wave vector (in the Pnma setting of the space group D 2h 16 ). The ferromagnetic superstructure is observed in the studied crystal at temperatures ranging from 4.2 to 200 K. It is shown that the formation of the ferromagnetic superstructure in this compound is directly associated with a 1/8-type charge ordering of Mn3+ and Mn4+ ions.  相似文献   

17.
X-band electron paramagnetic resonance (EPR) studies on divalent copper ions embedded in KMgClSO4·3H2O single crystals have been performed at low temperature (123 K). The angular variation of the EPR spectra reveals the presence of two Cu2+ sites, which have different orientations. The spin-Hamiltonian parameters of this six-coordinated cupric ion have been evaluated from the EPR spectra at 123 K. The forbidden lines due to ΔmI=±1 transitions are observed in between allowed transitions. The temperature variation EPR studies have also been performed both for a single crystal and a polycrystalline sample. The ground state wavefunction of Cu2+ ions has been estimated and is found to be an admixture of d3z2r2 and dx2y2. The temperature variation of the EPR spectra reveals that Cu2+ ions exhibit dynamic Jahn-Teller effect. From the polycrystalline EPR data, the temperature dependent magnetic susceptibilities are evaluated and discussed.  相似文献   

18.
《Solid State Ionics》2006,177(7-8):749-755
The thermal expansion behavior of sintered samples of Gd1−xSrxMnO3 (X = 0.0–0.4) was studied. The sintered bodies in this system showed negative thermal expansion over a wide temperature range. The detailed crystal structure refinements with respect to temperature showed that the volume of the orthorhombic perovskite lattice monotonically increased with temperature, however, in addition to this, the release of distortion from the Jahn-Teller effect of Mn3+ ion occurred over a wide temperature range, which brought the negative expansion of the a-axis, although the b- and c-axes increased with temperature. The anomalous thermal expansion is explained by the sum of the effects of the shrinkage of the a-axis and absorption of the b- and c-axes' expansion by the pores in the sintered body.  相似文献   

19.
Zero-field splitting (ZFS) parameters D and E for Mn2+ centers in ammonium tartrate single crystal are calculated with perturbation formulae using the superposition model. The theoretically calculated ZFS parameters for Mn2+ at site I and site II of ammonium ion are compared with the experimental values obtained by electron paramagnetic resonance (EPR) at room temperature. The superposition model gives the ZFS parameters similar to those from experiment. The energy band positions of optical absorption spectrum of Mn2+in ammonium tartrate are calculated using the CFA package and crystal field parameters from superposition model. These are in good agreement with experimental energy band positions.  相似文献   

20.
From a temperature variation EPR study of Mn2+ doped single crystals of Zn(ClO4)2·6H2O phase transition has been detected at T2~290 K. The phase relationships in this crystal are as follows. Phase I transforms atT2~346K to Phase II, which in turn transforms to Phase III at T2 ~ 290K. The latter exists down to at least 220 K. The space group symmetry of crystal may be the same, i.e. Pmn21 both above and below T2. The water-perchlorate sublattice symmetry below T2 is found to be lower than the P63mc symmetry determined previously by X-ray measurements. The onset of a monoclinic or lower symmetry distortion of the water octahedron around a metal ion which starts just below T2, is reflected through the observed temperature dependence of the rhombic distortion parameter E. It is felt that during this phase transition a change in the degree of configurational disorder associated with the perchlorate tetrahedra takes place, which in turn modifies the hydrogen bonded interaction in the crystal and consequently results in the onset of temperature dependent displacements of the mean positions of the oxygens of the water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号