首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
PIV measurements of the near-wake behind a sinusoidal cylinder   总被引:2,自引:0,他引:2  
The three-dimensional near-wake structures behind a sinusoidal cylinder have been investigated using a particle image velocimetry (PIV) measurement technique at Re=3,000. The mean velocity fields and spatial distributions of ensemble-averaged turbulence statistics for flows around the sinusoidal and corresponding smooth cylinders were compared. The near-wake behind the sinusoidal cylinder exhibited pronounced spanwise periodic variations in the flow structure. Well-organized streamwise vortices with alternating positive and negative vorticity were observed along the span of the sinusoidal cylinder. They suppress the formation of the large-scale spanwise vortices and decrease the overall turbulent kinetic energy in the near-wake of the sinusoidal cylinder. The sinusoidal surface geometry significantly modifies the near-wake structure and strongly controls the three-dimensional vortices formed in the near-wake.  相似文献   

2.
The flow characteristics around an elliptic cylinder with an axis ratio of AR=2 located near a flat plate were investigated experimentally. The elliptic cylinder was embedded in a turbulent boundary layer whose thickness is larger than the cylinder height. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The Reynolds number based on the height of the cylinder cross-section was 14000. The pressure distributions on the cylinder surface and on the flat plate were measured for various gap distances between the cylinder and the plate. The wake velocity profiles behind the cylinder were measured using hot-wire anemometry. In the near-wake region, the vortices are shed regularly only when the gap ratio is greater than the critical value of G/B=0·4. The critical gap ratio is larger than that of a circular cylinder. The variation of surface pressure distributions on the elliptic cylinder with respect to the gap ratio is much smaller than that on the circular cylinder. This trend is more evident on the upper surface than the lower one. The surface pressures on the flat plate recover faster than those for the case of the circular cylinder at downstream locations. As the gap ratio increases, the drag coefficient of the cylinder itself increases, but the lift coefficient decreases. For all gap ratios tested in this study, the drag coefficient of the elliptic cylinder is about half that of the circular cylinder. The ground effect of the cylinder at small gap ratio constrains the flow passing through the gap, and restricts the vortex shedding from the cylinder, especially in the lower side of the cylinder wake. This constraint effect is more severe for the elliptic cylinder, compared to the circular cylinder. The wake region behind the elliptic cylinder is relatively small and the velocity profiles tend to approach rapidly to those of a flat plate boundary layer  相似文献   

3.
The wake of a surface-mounted finite-height circular cylinder and the associated vortex patterns are strongly dependent on the cylinder aspect ratio and the thickness of the boundary layer on the ground plane relative to the dimensions of the cylinder. Above a critical aspect ratio, the mean wake is characterized by streamwise tip vortex structures and Kármán vortex shedding from the sides of the cylinder. Below a critical aspect ratio, a unique mean wake structure is observed. Recent experimental studies in the literature that used phase-averaged techniques, as well as recent numerical simulations, have led to an improved physical understanding of the near-wake vortex flow patterns. However, the flow above the free end of the finite circular cylinder, and its relationship to the near wake, has not been systematically studied. The effects of aspect ratio and boundary layer thickness on the free-end flow field are also not completely understood, nor has the influence of Reynolds number on the free-end flow field been fully explored. Common features associated with the free end include separation from the leading edge, a mean recirculation zone containing a prominent cross-stream arch (or mushroom) vortex, and reattachment onto the free-surface. Other flow features that remain to be clarified include a separation bubble near the leading edge, one or two cross-stream vortices within this separation bubble, the origins of the streamwise tip or trailing vortices, and various critical points in the near-surface flow topology. This paper reviews the current understanding of the flow above the free end of a surface-mounted finite-height circular cylinder, with a focus on models of the flow field, surface oil flow visualization studies, pressure and heat flux distributions on the free-end surface, measurements of the local velocity field, and numerical simulations, found in the literature.  相似文献   

4.
The flow structure around the free-end region of two adjacent finite circular cylinders embedded in an atmospheric boundary layer (ABL) was investigated experimentally. The experiments were carried out in a closed-return-type subsonic wind tunnel, in which two finite cylinders with an aspect ratio of 6 were mounted vertically on a flat plate in a side-by-side arrangement. The Reynolds number based on the cylinder diameter was about Re=2×104. Systems with gap ratios (i.e., center-to-center distance/cylinder diameter) in the range 1.0–2.0 were investigated. A hot-wire anemometer was employed to measure the wake velocity, and the mean pressure distribution on the cylinder surface was also measured. The flow past two finite cylinders was found to have a complicated three-dimensional wake structure in the region near the free ends. As the gap ratio increases, regular vortex-shedding becomes dominant, but the length of the vortex formation region decreases. The pressure distribution and flow structure around two cylinders were found to differ substantially from the behavior of a two-dimensional circular cylinder due to mutual interference. The three-dimensional flow structure seems to originate from the strong entrainment of irrotational fluids caused by the downwash counter-rotating vortices separated from the finite cylinder (FC) free ends.  相似文献   

5.
Air-flow around a circular cylinder placed above a free surface and liquid flow under the free surface were investigated experimentally in a wind/wave tunnel. The cylinder spanned the tunnel test-section and was oriented normal to the freestream direction. The main objective of this study was to investigate the interaction of the cylinder wake with the free surface. The flow structure was analyzed for various gap widths, H, between the cylinder and the free surface using a digital particle image velocimetry (PIV) system with a spatial resolution of 2048×2048 pixels. The Reynolds number based on the cylinder diameter was 3.3×103. For each experimental condition, 400 instantaneous velocity fields were measured and ensemble-averaged to obtain spatial distributions of the mean velocity and turbulence statistics. The results showed that the cylinder near-wake inclined upward due to the influence of the free surface elevation. Vortices were shed, even at a small gap ratio of H/D=0.25, where D is the cylinder diameter. Strong jet-like flow appeared in the gap beneath the cylinder. At a gap ratio of H/D=0.50, the jet flow exhibited a quasi-periodic vibration with a period of 2–3 s. The free surface deformation was caused by the pressure difference in the air-flow immediately above it. As the gap ratio increased, the inclination angle of the wake and the height of the free surface elevation decreased gradually. The liquid flow under the free surface followed a convective flow motion, and the range of the convection depended on the gap width between the cylinder and the free surface.  相似文献   

6.
The wake of a finite circular cylinder of small aspect ratio was studied with a seven-hole probe and thermal anemometry. The cylinder was mounted normal to a ground plane and was partially immersed in a turbulent boundary layer. The time-averaged velocity and streamwise vorticity fields showed the development of the tip vortex structures, the extent of the near-wake recirculation zone, the downwash phenomenon and base vortex structures within the boundary layer. The wake structure and power spectra were similar for cylinder aspect ratios of 5 to 9, but a distinctly different behaviour was observed for an aspect ratio of 3.  相似文献   

7.
Passive wake control behind a circular cylinder in uniform flow is studied by numerical simulation for ReD ranging from 80 to 300. Two small control cylinders, with diameter d/D=1/8, are placed at x/D=0.5 and y/D=±0.6. Unlike the 1990 results of Strykowski and Sreenivasan, in the present study, the vortex street behind the main cylinder still exists but the fluctuating lift and the form drag on the main cylinder reduces significantly and monotonously as the Reynolds number increases from 80 to 300. Obstruction of the control cylinders to the incoming flow deflects part of the fluid to pass through the gap between the main and control cylinders, forming two symmetric streams. These streams not only eliminate the flow separation along the rear surface of the main cylinder, they also merge toward the wake centerline to create an advancing momentum in the immediate near-wake region. These two effects significantly reduce the wake width behind the main cylinder and lead to monotonous decrease of the form drag as the Reynolds number increases. As the Reynolds number gets higher, a large amount of the downstream advancing momentum significantly delays the vortex formation farther downstream, leading to a more symmetric flow structure in the near-wake region of the main cylinder. As the Reynolds number increases from 80 to 300, both increasing symmetry of the flow structure in the near-wake and significant delay of the vortex formation are the main reasons for the fluctuating lift to decrease monotonously.  相似文献   

8.
The present study investigates the turbulent properties of the flow around a circular cylinder in the near-wake and in the near-wall upstream region at the Reynolds number 140,000. A detailed cartography of the mean and turbulent velocity fields using a moderate blockage and aspect ratio is provided in order to use the present results for direct comparisons with realisable 3D Navier-Stokes computations. The flow structure is analysed by means of two experiments using respectively the LDV and the PIV techniques, both providing a refined grid of measurement points. The dynamics of the separation region, the growth and decay of turbulence in the near wake, as well as the spatial growth of the organised mode are analysed.  相似文献   

9.
Fluid-structure interactions resulting from the free vibrations of a two-dimensional elastic cylinder in a cross flow are not well understood. Experimental data pertaining to the interaction behavior is rather scarce, especially that related to the phenomenon of synchronization where the vortex shedding frequency is approximately equal to the natural frequency of the fluid-structure system. The present investigation attempts to examine this problem experimentally using a laser vibrometer to assess the bending displacements and a laser Doppler anemometer to measure the velocities in the wake. Experiments were carried out over a range of reduced velocities. The reduced velocity was first varied by using cylinders of different materials and then by changing the free stream velocity, while maintaining the cylinder diameter constant. A proper choice of materials and reduced velocity allowed the synchronization phenomenon to be investigated. For the range of reduced velocity investigated, the vibration amplitude of the cylinder is finite, even at synchronization, and increases with reduced velocity. The results further show that more than one mode of vibration is excited away from synchronization; however, only the first mode is evident at synchronization. In addition, the near-wake flow behind the elastic cylinder, at three different Reynolds numbers in the sub-critical range, was measured in detail and the data was used to analyse the vibration effects on the mean and turbulence field compared to those measured behind a relatively rigid cylinder at the same Reynolds numbers. It is found that cylinder vibrations have little or no effect on the mean drag and the normalized mean field. However, cylinder vibrations enhance turbulent mixing, thus resulting in a substantial increase in the turbulent intensities. This implies that the large-scale vortical motion is also affected. Nevertheless, turbulence structure in the inertial sub-range is not affected by cylinder vibrations. The slopes of the velocity spectra in this range is still measured to be −5/3 for the freely vibrating cylinders investigated. Received: 20 December 1998/Accepted: 20 September 1999  相似文献   

10.
并列双圆柱流致振动的不对称振动和对称性迟滞研究   总被引:2,自引:0,他引:2  
对雷诺数Re = 100 间距比s/D = 2.5 和5.0 的并列双圆柱流致振动进行了数值模拟研究, 其中圆柱质量比m = 2.0, 折合流速Ur 在2.0~10.0 之间, 两圆柱仅能做横流向振动. 研究发现, 当间距比s/D = 2.5 时, 在折合流速4.4 < Ur< 4.8区间内, 两圆柱流致振动响应出现不对称振动现象, 在折合流速4.4 < Ur< 4.8 区间内, 两圆柱流致振动响应出现对称性迟滞现象; 而当间距比s/D = 2.5时, 圆柱流致振动响应与单圆柱涡激振动响应相似, 没有出现不对称振动和对称性迟滞现象. 在不对称振动区间内, 两圆柱的升、阻力参数也出现了不相等的情况. 此外, 当两圆柱不对称振动时, 圆柱间隙流稳定地偏斜向其中的一个圆柱; 相应地, 尾涡也出现了宽窄不等的模式. 窄尾流圆柱的振幅和升、阻力均较宽尾流圆柱的大. 通过对比不对称振动现象发生前后的尾涡模式, 对新现象的产生机制进行了阐述.   相似文献   

11.
基于浸入边界-格子Boltzmann通量求解法,开展了雷诺数Re=100不同几何参数下单椭圆柱及串列双椭圆柱绕流流场与受力特性对比研究。结果表明,随长短轴比值的增加,单椭圆柱绕流阻力系数先减小后缓慢上升,最大升力系数则随长短轴比值的增大而减小;尾迹流动状态从周期性脱落涡到稳定对称涡。间距是影响串列圆柱及椭圆柱流场流动状态的主要因素,间距较小时,串列圆柱绕流呈周期性脱落涡状态,而椭圆柱则为稳定流动;随着间距增加,上下游圆柱及椭圆柱尾迹均出现卡门涡街现象,且串列椭圆柱临界间距大于串列圆柱。串列椭圆柱阻力的变化规律与圆柱的基本相同,上游平均阻力大于下游阻力;上游椭圆柱阻力随着间距的变大先减小,下游随间距的变大而增加,当间距达到临界间距时上下游阻力跃升,随后出现小幅度波动再逐渐增加,并趋近于相同长短轴比值下单柱体绕流的阻力。  相似文献   

12.
13.
Wind tunnel experiments were conducted to measure the vortex shedding frequencies for two circular cylinders of finite height arranged in a staggered configuration. The cylinders were mounted normal to a ground plane and were partially immersed in a flat-plate turbulent boundary layer. The Reynolds number based on the cylinder diameter was ReD=2.4×104, the cylinder aspect ratio was AR=9, the boundary layer thickness relative to the cylinder height was δ/H=0.4, the centre-to-centre pitch ratio was varied from P/D=1.125 to 5, and the incidence angle was incremented in small steps from α=0° to 90°. The Strouhal numbers were obtained behind the upstream and downstream cylinders using hot-wire anemometry. From the behaviour of the Strouhal number data obtained at the mid-height position, the staggered configuration could be broadly classified by the pitch ratio as closely spaced (P/D<1.5), moderately spaced (1.5?P/D?3), or widely spaced (P/D>3). The closely spaced staggered finite cylinders were characterized by the same Strouhal number measured behind both cylinders, an indication of single bluff-body behaviour. Moderately spaced staggered finite cylinders were characterized by two Strouhal numbers at most incidence angles. Widely spaced staggered cylinders were characterized by a single Strouhal number for both cylinders, indicative of synchronized vortex shedding from both cylinders at all incidence angles. For selected staggered configurations representative of closely spaced, moderately spaced, or widely spaced behaviour, Strouhal number measurements were also made along the vertical lengths of the cylinders, from the ground plane to the free end. The power spectra showed that for certain cylinder arrangements, because of the influences of the cylinder–wall junction and free-end flow fields, the Strouhal numbers and flow patterns change along the cylinder.  相似文献   

14.
A technique of high-image-density particle image velocimetry is employed to characterize the instantaneous and averaged patterns of velocity, vorticity and Reynolds stress due to flow past two cylinders in tandem. These features of the flow patterns are characterized in the gap region as a function of the distance between the cylinders. In turn, they are related to the patterns in the near-wake of the two-cylinder system. Along the gap between the cylinders, small-scale concentrations of vorticity are formed in the separated shear layers. These concentrations buffet the surface boundary layer on the downstream cylinder, and thereby influence the eventual shedding of large-scale vortices. Within the gap, the instantaneous structure of the recirculation zones can exhibit both symmetrical and asymmetrical patterns. In the near-wake of the downstream cylinder, the form of the vortex shedding, as well as the averaged patterns of the flow structure, are substantially altered, relative to the case of a single cylinder. The width of the near-wake, as represented by averaged patterns of vorticity, is substantially narrower and the magnitudes of the peak Reynolds stress are significantly attenuated. On the other hand, if the gap region is sufficiently large such that Kármán-like vortices form between the cylinders, the near-wake of the downstream cylinder shows distinctive patterns, and both the wake width and the magnitude of the Reynolds stresses become larger, relative to those at smaller gap width.  相似文献   

15.
This article presents a short review of the three-dimensional transition of wakes from two-dimensional bodies, such as cylinders of various cross-sectional shape, and axisymmetric tori or rings. The nature and sequence of instabilities are compared and contrasted, especially with reference to the base case of the circular cylinder wake. The latter has been the subject of intense interest and scrutiny for well over a century, and has implicitly assumed the role of providing the generic transition scenario for turbulent wake flow. For elongated cylinders with streamlined leading edges, the analogues of the instability modes for a circular cylinder become unstable in the reverse order, which may have implications for the route to wake turbulence for such bodies. As well, the analogue of mode B has a significantly increased relative spanwise wavelength and appears to have a different near-wake structure. At the other extreme, for a normal flat plate, the wake first becomes unstable to a nonperiodic mode that appears distinct from either of the dominant circular cylinder wake modes. For tori, which have a local geometry approaching a two-dimensional circular cylinder for high aspect ratios (ARs), the sequence of transitions with increasing Reynolds number is a strong function of AR. For intermediate ARs, the first occurring wake instability mode is a subharmonic mode. Possible underlying physical mechanisms leading to some of these instabilities are also examined. In particular, support is provided for the role of idealized physical instability mechanisms in controlling wavelength selection and amplification for the dominant wake instability modes. The results presented in this article focus on relevant research undertaken by the Monash group but draws in results from many other international groups.  相似文献   

16.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

17.
The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 104. The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer.  相似文献   

18.
The flow characteristics around an inclined elliptic cylinder located near a flat plate were investigated experimentally. The axis ratio of the elliptic cylinder was AR=2. The pressure distributions along the surface of the cylinder and the flat plate were measured by varying the angle of attack of the elliptic cylinder. The velocity profiles behind the cylinder were measured using hot-wire anemometry. When the angle of attack varies, the peak pressure location on the windward cylinder surface moves towards the rear edge of the cylinder, while that on the leeward surface moves towards the front edge of the cylinder. The vortex-shedding frequency also gradually decreases, defining a critical angle of attack for each gap ratio. The location of the minimum pressure on the flat plate surface moves downstream for positive angles of attack, while it moves upstream for negative angles of attack. Negative angles of attack cause a greater disturbance in the boundary layer near the wall compared to positive angles of attack. This shows that the separated wall shear layer from the boundary layer and the lower shear layer of the cylinder wake are strongly merged compared to other cases.  相似文献   

19.
The effect of the streamwise vortex generators on the near-wake flow structure of a circular cylinder was experimentally investigated. Digital particle image velocimetry (DPIV) measurements were performed in a large circulating water tunnel facility at a Reynolds number of 41,300 where the flow around a bare cylinder was expected to be at the sub-critical flow state. In order to capture various flow properties and to provide a detailed wake flow topology, the DPIV images were analysed with three different but complementary flow field decomposition techniques which are Reynolds averaging, phase averaging and proper orthogonal decomposition (POD). The effect of the vortex generators was clearly demonstrated both in qualitative and in quantitative manner. Various topological features such as vorticity and stress distribution of the flow fields as well as many other key flow characteristics including the length scales and the Strouhal number were discussed in the study. To the best of the authors’ knowledge, the study presents the first DPIV visualization of the near-wake flow of a circular cylinder fitted with the vortex generators in the open literature.  相似文献   

20.
A computational study of the development of two- dimensional unsteady viscous incompressible flow around a circular cylinder and elliptic cylinders is undertaken at a Reynolds number of 10,000. A higher- order upwind scheme is used to solve the Navier–Stokes equations by the finite difference method in order to study the onset of computed asymmetry around bluff bodies. For the computed cases the ellipses develop asymmetry much earlier than the circular cylinder. The receptivity of the computed flows in the presence of discrete roughness and surface vibration is studied. Finally, the role of discrete roughness in triggering asymmetry for flow past a circular cylinder is studied and compared with flow visualization experiments at Re=10,000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号