首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of numerous iodinated ortho‐carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature—mostly as it relates to hydrogen and/or halogen bonds—and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho‐carboranes: 9‐I‐1,2‐closo‐C2B10H11, 4,5,7,8,9,10,11,12‐I8‐1,2‐closo‐C2B10H4, 3,4,5,6,7,8,9,10,11,12‐I10‐1,2‐closo‐C2B10H2, 1‐Me‐8,9,10,12‐I4‐1,2‐closo‐C2B10H7, 1,2‐Me2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6, and 1,2‐Ph2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6. Their 3D supramolecular organization has been thoroughly investigated and compared to similar previously published crystal structures. Such a systematic survey has allowed us to draw some general trends. Cc? H???I? B hydrogen bonds (Cc= cluster carbon atoms) appear to be significant in the growth of the crystal lattices of these compounds, given the acidity of hydrogen atoms bonded to Cc, and the polarization of B? I bonds. These hydrogen bonds can be disrupted by selectively blocking the positions next to Cc, that is, B(3) and B(6), with bulky substituents that prevent iodine atoms from approaching as hydrogen acceptors. Halogen bonds of the type B? I???I? B are frequently observed in most cases, thus suggesting that these interactions could be attractive in boron clusters. In addition, different substituents can be grafted onto the ortho‐carborane surface, thereby providing further possibilities for homomeric or heteromeric molecular assembly.  相似文献   

2.
It has been shown by electrospray ionization–ion‐trap mass spectrometry that B12I122? converts to an intact B12 cluster as a result of successive stripping of single iodine radicals or ions. Herein, the structure and stability of all intermediate B12In? species (n=11 to 1) determined by means of first‐principles calculations are reported. The initial predominant loss of an iodine radical occurs most probably via the triplet state of B12I122?, and the reaction path for loss of an iodide ion from the singlet state crosses that from the triplet state. Experimentally, the boron clusters resulting from B12I122? through loss of either iodide or iodine occur at the same excitation energy in the ion trap. It is shown that the icosahedral B12 unit commonly observed in dodecaborate compounds is destabilized while losing iodine. The boron framework opens to nonicosahedral structures with five to seven iodine atoms left. The temperature of the ions has a considerable influence on the relative stability near the opening of the clusters. The most stable structures with five to seven iodine atoms are neither planar nor icosahedral.  相似文献   

3.
The competition between the ytterbium endo-atom and the pyridine exo-molecules as nucleophiles interacting with the electron-deficient 1H,4H-1,4-diborabuckminsterfullerene was studied using the quantum chemical DFT PBE0 method. The equilibrium structural parameters, dipole moments, IR spectra, and exothermic effects of the formation of the C58B2•Py2 adduct and the endohedral Yb@C58B2•Py2 complex were determined. The concept of the state of oxidation/reduction of an atom in a chemical compound has been clarified. The localization of the ytterbium(II) under a pair of equivalent carbon atoms bonded to boron(III) atoms is predicted. The introduction of ytterbium(II) into the adduct cavity weakens exo-bonds with pyridine molecules without changing the oxidation state of boron(III). Each nitrogen atom retains a lone electron pair, coordinated by a boron(III). The ytterbium(II) endo-atom retains 14 electrons in f states.  相似文献   

4.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

5.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

6.
Reduction of carbene‐borane adduct [(cAAC)BBr2(CN)] (cAAC=1‐(2,6‐diisopropylphenyl)‐3,3,5,5‐tetramethylpyrrolidin‐2‐ylidene) cleanly yielded the tetra(cyanoborylene) species [(cAAC)B(CN)]4 presenting a 12‐membered (BCN)4 ring. The analysis of the Kohn–Sham molecular orbitals showed significant borylene character of the BI atoms. [(cAAC)B(CN)]4 was found to reduce two equivalents of AgCN per boron center to yield [(cAAC)B(CN)3] and fragmented into two‐coordinate boron(I) units upon reaction with IMeMe (1,3,4,5‐tetramethylimidazol‐2‐ylidene) to yield the corresponding tricoordinate mixed cAAC‐NHC cyanoborylene. The analogous cAAC‐phosphine cyanoborylene was obtained by reduction of [(cAAC)BBr2(CN)] in the presence of excess phosphine.  相似文献   

7.
Two ternary borides MNi9B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single‐crystal X‐ray diffraction data reveal AlNi9B8 and GaNi9B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two‐dimensional layers, which consist of puckered [B16] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices‐condensed [Ni12] icosahedra, which form a three‐dimensional framework interpenetrated by boron porphyrin‐reminiscent layers. An unusual local arrangement resembling a giant metallo‐porphyrin entity is formed by the [B16] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B?B interactions and weak Ni?Ni interactions. Multi‐center dative B?Ni interaction occurs between the Al–Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9B8 is a Pauli‐paramagnetic metal.  相似文献   

8.
The preparation and structures of three diborane(4) compounds are described. The compound B2(3,4‐S2C4H2‐1‐S)2 [2,2′‐bi(1,3,5,2‐tri­thia­borapentalene), C8H4B2S6] is planar and lies at a crystallographic inversion centre. The amine adducts [B2(C3S5)2(NHMe2)2] [2,2′‐bis­(di­methyl­amino)‐2,2′‐bi(1,3,4,6,2‐tetra­thia­borapentalene‐5‐thione), C10H14B2N2S10] and [B2(1,2‐S2C2H4)2(NHMe2)2]·0.33CH2Cl2 [1,2‐bis­(di‐methylamino)‐1,1:2,2‐bis(dimethylenedithioxy)diborane(4) di­chloro­methane solvate, C8H22B2N2S4·0.33CH2Cl2] contain di­methyl­amine ligands bound to each boron in an anti conformation about the B—B bond, with tetrahedral geometry at the B atoms. The crystal structures display a number of S?S interactions, which appear to dictate the packing arrangements.  相似文献   

9.
The red‐colored tetraborane(4) [B4(hpp)4]3+. ( 3 ; hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) with a rhomboid B4 skeleton stabilized by four N donors, was synthesized by the reaction of the strong hydride abstraction reagent [(acridine)BCl2][AlCl4] with the electron‐rich diborane(4) [HB(hpp)]2 ( 1 ). The salt 3 [AlCl4]3 was structurally characterized and the presence of unpaired electrons proven by EPR measurements. The unprecedented radical tricationic 3 is distinguished by a high positive charge and boron atoms in a low oxidation state (less than two).  相似文献   

10.
Rare Earth Halides Ln4X5Z. Part 3: The Chloride La4Cl5B4 – Preparation, Structure, and Relation to La4Br5B4, La4I5B4 La4Cl5B4 is synthesized by reaction of LaCl3, La metal and boron in sealed Ta containers at 1050 °C < T < 1350 °C. It crystallizes in the monoclinic space group C2/m with a = 16.484(3) Å, b = 4.263(1) Å, c = 9.276(2) Å and β = 120.06(3)°. Ce4Cl5B4 is isotypic, a = 16.391(3) Å, b = 4.251(1) Å, c = 9.180(2) Å and β = 120.20(3)°. The La atoms form strings of trans-edge shared La octahedra, and the B atoms inside the strings form B4-rhomboids, which are condensed to chains via opposite corners. The Cl atoms interconnect the channels according to La2La4/2Cli−i6/2Cli−a2/2Cla−i2/2. The crystal structures of the bromide and the iodide are comparabel, however, the interconnection of the strings is different in the three structure types, as 14 Cl, 13 Br and 12 I atoms surround the La6 octahedra.  相似文献   

11.
The complex ion [Fe(CN)6SO3]4− has been prepared in aqueous solution and as the zinc salt in the solid state. The electronic and IR spectra of the complex ion (I) have been recorded. MO calculations have been performed to understand the electronic structure of complex I. The electronic spectra of I and hexacyanoferrate(II) [HCF(II)] have been calculated and compared with the experimental results for I, HCF(II) and HCF(III). The experimental and theoretical results suggest that the oxidation state of Fe in I is + 3 and not +2 and the SO3 moiety is bonded to one of the nitrogen atoms of the cyano group.  相似文献   

12.
Y16I19C8B4 – a Yttrium Boride Carbide Halide Containing B2C4 Units The new compound Y16I19C8B4 was prepared from Y, YI3, C and B at 1050–1150 °C. The structure of a twinned crystal was determined by means of X-ray diffraction (space group P 1¯, a = 12.311(2) Å, b = 13.996(3) Å, c = 19.695(3) Å, α = 74.96(2)°, β = 89.51(2)°, γ = 67.03(2)°, Z = 2). Y16I19C8B4 is a semiconductor and contains nearly planar B2C4 units which are located in cages built up by 12 yttrium atoms. Assuming (B2C4)12–, these units can be regarded as isoelectronic with B2F4. The yttrium cages are connected via faces to form rods, which are surrounded by iodine atoms. Bridging iodine atoms connect the rods so that layers are formed. The characteristic twinning observed can be understood from the geometry of the crystal structure.  相似文献   

13.
A triaminotriborane(3) was isolated as purple crystals through the reduction of (TMP)BCl2 (TMP=2,2,6,6‐tetramethylpiperidino) by sodium naphthalenide. Single‐crystal X‐ray diffraction and computational studies of the obtained triaminotriborane(3) revealed a bent structure of the [B(NR2)]3 chain. The bond lengths between the central and terminal boron atoms were similar to those observed in neutral diborene species. The multiple‐bonding character may be best described by a three‐center two‐electron π‐bond along the B3 chain. The distance between the two terminal boron atoms (2.177 Å) in the solid‐state structure implies a weak interaction between them. When an excess amount of Li was used as the reducing agent, the reaction yielded an unusual dianionic species. The isolation and characterization of these two reduction products are reported herein.  相似文献   

14.
Isotypic imidonitridophosphates MH4P6N12 (M=Mg, Ca) have been synthesized by high‐pressure/high‐temperature reactions at 8 GPa and 1000 °C starting from stoichiometric amounts of the respective alkaline‐earth metal nitrides, P3N5, and amorphous HPN2. Both compounds form colorless transparent platelet crystals. The crystal structures have been solved and refined from single‐crystal X‐ray diffraction data. Rietveld refinement confirmed the accuracy of the structure determination. In order to quantify the amounts of H atoms in the respective compounds, quantitative solid‐state 1H NMR measurements were carried out. EDX spectroscopy confirmed the chemical compositions. FTIR spectra confirmed the presence of NH groups in both structures. The crystal structures reveal an unprecedented layered tetrahedral arrangement, built up from all‐side vertex‐sharing PN4 tetrahedra with condensed dreier and sechser rings. The resulting layers are separated by metal atoms.  相似文献   

15.
The geometry, electronic configurations, harmonic vibrational frequencies, and stability of the structural isomers of boron phosphide clusters have been investigated using density functional theory (DFT). CCSD(T) calculations show that the lowest‐energy structures are cyclic (IIt, IVs) with Dnh symmetry for dimers and trimers. The caged structure for B4P4 lie higher in energy than the monocyclic structure with D2d symmetry (VIs). The B–P bond dominates the structures for many isomers, so that one preferred dissociation channel is loss of the BP monomer. The hybridization and chemical bonding in the different structures are also discussed. Comparisons with boron nitride clusters, the ground state structures of BnPn (n = 2, 3) clusters are analogous to those of their corresponding BnNn (n = 2, 3) counterparts. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

16.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively.  相似文献   

17.
[Fc2B2(Br)(μ‐NPEt3)2]+Br – a Ferrocenyl‐substituted Phosphoraneiminato Complex of Boron [Fc2B2(Br)(μ‐NPEt3)2]+Br has been prepared from ferrocenylboron dibromide, [Fe(η5‐C5H5)(η5‐C5H4BBr2)], and the silylated phosphoraneimine Me3SiNPEt3 in dichloromethane solution to give orange‐red single crystals which were characterized by IR, NMR and 57Fe Mössbauer spectra, as well as by a crystal structure determination. [Fc2B2(Br)(μ‐NPEt3)2]+Br · 3 CH2Cl2 ( 1 · 3 CH2Cl2): Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1370.6(3), b = 2320.9(5), c = 1454.4(2), β = 95.38(1)°, R1 = 0.061. In the cation of 1 the ferrocenyl‐substituted boron atoms are connected by the nitrogen atoms of the [NPEt3] groups to form a planar B2N2 four‐membered ring. One of the boron atoms having planar, the other tetrahedral coordination.  相似文献   

18.
We performed global minimum searches for the BnHn+2 (n=2‐5) series and found that classical structures composed of 2c–2e B? H and B? B bonds become progressively less stable along the series. Relative energies increase from 2.9 kcal mol?1 in B2H4 to 62.3 kcal mol?1 in B5H7. We believe this occurs because boron atoms in the studied molecules are trying to avoid sp2 hybridization and trigonal structure at the boron atoms, as in that case one 2p‐AO is empty, which is highly unfavorable. This affinity of boron to have some electron density on all 2p‐AOs and avoiding having one 2p‐AO empty is a main reason why classical structures are not the most stable configurations and why multicenter bonding is so important for the studied boron–hydride clusters as well as for pure boron clusters and boron compounds in general.  相似文献   

19.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

20.
Two new mixed‐anion zinc(II) and cadmium(II) complexes of 3‐(2‐pyridyl)‐5,6‐diphenyl‐1,2,4‐triazine (PDPT) ligand, [Zn(PDPT)2Cl(ClO4)] and [Cd(PDPT)2(NO3)(ClO4)], have been synthesized and characterized by elemental analysis, IR‐ and 1H NMR spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six with four N‐donor atoms from two “PDPT” ligand and two of the anionic ligands, ZnN4ClOperchlorate, CdN4OnitrateOperchlorate. Self‐assembly of these compounds in the solid state via ππ‐stacking interactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号