首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Silver-containing nanocomposites based on sulfated arabinogalactan have been prepared under mild conditions. The products contain 2–12 nm silver nanoparticles stabilized by the polymer. The composites are readily water-soluble and reveal antimicrobial activity against a wide range of bacteria and fungi.

  相似文献   

2.
Crystallographic size effects occurring during the formation of zero-valence silver and gold nanoparticles dispersed in a biopolymer polysaccharide matrix (arabinogalactan) have been studied by means of X-ray diffraction analysis. The average size of the nanoparticles has been found to increase with the increase in the metal content in the nanocomposite. Stabilization of the nanoparticles by the polymer matrix is accompanied by the decrease in the unit cell parameter of the metal correlated with the decrease in the coherent scattering length.  相似文献   

3.
A simple general method employing arabinogalactan hemicellulose as a reducing and stabilizing agent is used to synthesize hydrophilic nanoparticles of noble metals. The prepared organic-inorganic nanobiocomposites are characterized by electronic spectroscopy, powder X-ray diffraction, and scanning electron microscopy. The sizes of coherent scattering regions of the metal phase of the prepared nanocomposites are determined, and their surface morphology and grain size are demonstrated to be controlled by the nature of the nanosized metal.  相似文献   

4.
FeCo alloy nanoparticles encapsulated in the carbon matrix of metal–carbon nanocomposites have been manufactured under IR heating. The size of FeCo nanoparticles have been found to be tailored by varying synthesis temperature and metal concentration. The saturation magnetization has been shown to increase as the synthesis temperature or metal concentration rises, with an attendant decrease in coercive force. The electromagnetic properties of FeCo/C nanocomposites have been studied. Complex magnetic permittivity measurements have shown that variation of the synthesis temperature or metal concentration can appreciably increase magnetic loss, which leads to a shift of the band of minimum electromagnetic reflectivity in the frequency range 3–12 GHz.  相似文献   

5.
Noble metal nanoparticles like Au have long been admired for their brilliant colour, significantly influenced by plasmon resonance. When embedded in metal oxides, they exhibit unique properties which make them an excellent choice for sensing in high-temperature and harsh environment atmospheres. In this review, the various morphologies of Au nanoparticles (AuNPs) used in combination with metal oxides for sensing gases at temperatures greater than 300 °C are discussed. Theoretical discussions on the plasmon resonance properties of AuNPs as well as computational techniques like finite difference time domain (FDTD), are often used for understanding and correlating their extinction spectra and are briefed initially. The sensing properties of AuNPs embedded on a metal oxide matrix (such as TiO2, SiO2, NiO etc) for quantifying multiple analytes are then elucidated. The effect of high temperature as well as gas environments including corrosive atmospheres on such nanocomposites, and the different approaches to comprehend them are presented. Finally, techniques and methods to improve on the challenges associated with the realization and integration such Au-metal oxide plasmonic nanostructures for applications such as combustion monitoring, fuel cells, and other applications are discussed.  相似文献   

6.
Self-polymerization of dopamine, in either an alkaline or an acidic environment, to form polydopamine is a material-independent surface coating technique, influencing almost all areas of material science and engineering. We demonstrated a simple, two-step method to prepare in-situ silver or silver-copper alloy nanoparticles on the surface of reduced graphene oxides, using polydopamine formed in an acidic medium. The acidic medium was created by a nonthermal micro-hollow cathode discharge device and the device was operated at atmospheric pressure, using air as the working gas. The nanocomposites were characterized with SEM, EDX, ICP-OES, and FT-IR; the electrochemical catalytic activity was tested using rotating disk electrode. The characterization methods confirmed the formation of the nanocomposites, which contain polydopamine, reduced graphene oxides, and metal nanoparticles or nanoalloy. We hypothesized that by alloying silver and copper on the surface of reduced graphene oxides, the oxygen reduction reaction (ORR) catalytic activity of the nanocomposites will be enhanced through both alloying and substrate effects. The size range of the nanoparticles is between 10 nm and 15 nm. We find that both the silver and alloy samples catalyze the ORR via a four-electron mechanism. The alloy nanocomposites showed better performance indicator parameters than the silver one, in both mass activity and kinetic current density. This preparation method has paved a new way of synthesizing an ORR catalyst in an environmentally friendly manner.  相似文献   

7.
Graphene has been decorated by nanoparticles of noble metals and other inorganic materials. In the present study, we have decorated graphene-like MoS2 and MoSe2, containing 3–5 layers, with Au, Ag and Pt nanoparticles. We have characterized these nanocomposites using X-ray diffraction, electron microscopy and absorption spectroscopy. The studies reveal that the surfaces of the layered inorganic materials get uniformly coated with the noble metal nanoparticles. There are indications that the interaction of the metal particles with these layered materials is rather weak.  相似文献   

8.
In this work, a novel route to synthesize polymer/metal composite nanospheres has been proposed. This method combines the advantages that the polymer chains collapse and entangle in the presence of compressed CO(2), which acts as antisolvent, and the metal nanoparticles and polymers can be precipitated simultaneously from micellar solutions by the easy control of CO(2) pressure. Ag/polystyrene (PS) nanocomposites have been successfully prepared using this method. The transmission electronic micrographs (TEM) of the obtained nanocomposites show that the smaller Ag nanoparticles are immobilized by PS nanospheres of about 50 nm; the phase structure was characterized by X-ray diffraction (XRD). The Ag/PS nanocomposites show absorption properties at a wavelength of approximately 417 nm. The results of X-ray photoelectron spectra (XPS) and FT-IR spectra indicate that there is no chemical linkage or strong interaction between PS and Ag nanoparticles in the resultant products. This method has many potential advantages for applications and may easily be applied to the preparation of a range of inorganic/ polymer composite nanoparticles.  相似文献   

9.
Russian Journal of General Chemistry - Water-soluble nanocomposites consisting of arabinogalactan (AG)-stabilized Bi2Te3 nanoparticles with an average size of 32–44 nm were synthesized for...  相似文献   

10.
Polypropylene filled with 10 wt% of inorganic nanoparticles has been prepared by melt blending. The fillers investigated were manganese oxides (MnO and Mn2O3) and manganese oxalate (MnC2O4). The morphology and thermal stability of these nanocomposites have been studied by transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The experimental results reveal that the addition of 10 wt% manganese oxides improves the thermal stability in air of polypropylene by about 70-80 °C. In a second step, these nanocomposites have been processed by melt spinning in order to produce multifilament yarn. The mechanical properties of these filaments have then been characterized. It is shown that just the addition of Mn2O3 improves the mechanical properties of polypropylene filaments. The flammability of these nanocomposites used as knitted fabrics has finally been evaluated with a mass loss calorimeter at 35 kW/m2. This kind of experiment has not revealed a real improvement of fire properties.  相似文献   

11.
《印度化学会志》2023,100(3):100908
Water is an important item for the survival of humans, animals and plants in the planet earth. In the industrialized world, water pollution is raising every day, mainly in the textile, paper, medicine, and plastic production industries. Pollution from coloured compounds is primarily identified as being the major threat to wastewater. In the absence of any pre-treatment, substituted phenols, dyes and agricultural wastes seriously contaminate groundwater systems. For the removal of dyes from the industrial waste water, the following three traditional methods are used: chemical, physical and biological but, the cost of the methods little high. For alternation of these methods, now a days photocatalytic degradation method was used. Metal and metal oxide nanoparticles are excellent catalysts for reducing and degrading aqueous phase nitro compounds and aromatic dyes. Nanoparticles are commonly assembled into two types, i.e., organic (carbon nanoparticles) and inorganic (metal, semiconductor and magnetic nanoparticles) nanoparticles. In this review article we are mainly focused on the behaviour of different types of pure metal oxides and metal oxide@metal/metal oxide/carbon/polymer nanocomposites for the removal of various organic pollutants from water and their efficiency has been reported. As a result of their review the cerium-based metal oxides such as CdS/CeO2, CeO2/Y2O3, GQDs/CeO2 and Ag/cellulose@CeO2/QDs shows more degradation efficiency (above~95%) towards the organic pollutants when compared to other metal oxides.  相似文献   

12.
Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment.  相似文献   

13.
A new and universal synthetic strategy to hybridize metal oxides and conduct polymer nanocomposites has been proposed in this work. The simultaneous reaction process, which includes the generation of metal oxide layers, the oxidation polymerization of monomers, and the in situ formation of polymer–metal oxides sandwich structure is successfully realized and results in the unique hybrid polyaniline (PANI)‐intercalated molybdenum oxide nanocomposites. The peroxomolybdate proved to play a dual role as the precursor of the inorganic hosts and the oxidizing agent for polymerization. The as‐obtained hybrid nanocomposites present a flexible lamellar structure by oriented assembly of conductive PANI chains in the MoO3 interlayer, and thus inherit excellent electrical performance and possess the potential of active electrode materials for electrochemical energy storage. Such uniform lamellar structure together with the anticipated high conductivity of the hybrid PANI/MoO3 nanocomposites afford high specific capacitance and good stability during the charge–discharge cycling for supercapacitor application.  相似文献   

14.
Metallic nanoparticles embedded into the structure of metal oxides may play a role of catalytic substances. Such composites are mostly applied in oxidation reactions. The paper presents two one-step-methods for obtaining nanocomposites of gold embedded in the structure of iron oxide matrices (nanoAu/Fe2O3). Gold nanoparticles were formed in situ in the process of iron hydroxide dehydration. Thanks to the use of tannic acid it was possible to effectively reduce gold ions and stabilize the forming metal nanoparticles. The composites were prepared in the fields of microwave, ultraviolet radiation. The physicochemical properties of products were determined by scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray analysis and high-resolution transmission electron microscopy technique with EDS and elemental mapping mode. Also, the catalytic activity of the nanocomposites obtained was evaluated based on the process of methyl orange degradation. It was observed that products obtained according to the microwave radiation method are characterized by improved applying properties.  相似文献   

15.
This study describes a novel approach for the in situ synthesis of metal oxide–polyelectrolyte nanocomposites formed via impregnation of hydrated polyelectrolyte films with binary water/alcohol solutions of metal salts and consecutive reactions that convert metal cations into oxide nanoparticles embedded within the polymer matrix. The method is demonstrated drawing on the example of Nafion membranes and a variety of metal oxides with an emphasis placed on zinc oxide. The in situ formation of nanoparticles is controlled by changing the solvent composition and conditions of synthesis that for the first time allows one to tailor not only the size, but also the nanoparticle shape, giving a preference to growth of a particular crystal facet. The high‐resolution TEM, SEM/EDX, UV‐vis and XRD studies confirmed the homogeneous distribution of crystalline nanoparticles of circa 4 nm and their aggregates of 10–20 nm. The produced nanocomposite films are flexible, mechanically robust and have a potential to be employed in sensing, optoelectronics and catalysis.  相似文献   

16.
Polysiloxanes in combination with metal oxides show interesting properties as nanocomposites for optical or medical applications. The formation of covalent connections between the metal oxide and the polysiloxane is an important method to overcome phase separation between the two components, but it also can have an influence on the morphology of the final materials. In this contribution we report a method for the synthesis of hybrid materials based on polysiloxanes and various metal oxides in which both components are tightly connected to each other. Alkoxysilane modified polysiloxanes were obtained by hydrosilation reactions between vinyl triethoxysilane and poly(dimethylsiloxane-co-methylhydrosiloxane) (PDMS-co-PMHS). The thus functionalized polymers were used in a sol-gel process applying Stöber conditions and hybrid nanoparticles were obtained. Following the same pathway, different metal alkoxides (M(OR)4; M = Ti, Zr; R = ethyl, isopropyl) were coordinated to allyl acetoacetate (AAA) and the resulting complexes were applied in a hydrosilation reaction with PDMS-co-PMHS. Metal oxide hybrid nanoparticles were obtained through a sol–gel process.  相似文献   

17.
Rational nanostructure manipulation has been used to prepare nanocomposites in which multiwalled carbon nanotubes (MWCNTs) were embedded inside mesoporous layers of oxides (TiO(2), ZrO(2), or CeO(2)), which in turn contained dispersed metal nanoparticles (Pd or Pt). We show that the MWCNTs induce the crystallization of the oxide layer at room temperature and that the mesoporous oxide shell allows the particles to be accessible for catalytic reactions. In contrast to samples prepared in the absence of MWCNTs, both the activity and the stability of core-shell catalysts is largely enhanced, resulting in nanocomposites with remarkable performance for the water-gas-shift reaction, photocatalytic reforming of methanol, and Suzuki coupling. The modular approach shown here demonstrates that high-performance catalytic materials can be obtained through the precise organization of nanoscale building blocks.  相似文献   

18.
Polyaniline (PANI) is one of the most extensively used conducting polymer due to its fascinating properties including conducting, thermal, optical, magnetic and electrochemical properties, simple synthesis procedure and low cost of monomer. It has attracted major attention in a variety of applications including electrochemical sensors, catalysts, supercapacitors and biosensors. However, its limitations such as insolubility in common solvents, low process-ability and poor mechanical properties have led to the development of new approaches to improve it properties. Metal nanoparticles (MNPs) such as silver, gold, copper and palladium have been combined with PANI to improve on its properties which has led to a new class of materials known as metal/PANI nanocomposites. These hybrid nanocomposites incorporate advantages of both MNPs and polymers which effectively improves the properties of the individual materials. Various synthesis techniques including in situ polymerization, ɤ-radiolysis, electrodeposition, complexation, vacuum deposition and interfacial polymerization have been used in the formation of metal/PANI nanocomposites. These nanocomposites have been used in various sensor and biosensor applications due to their excellent conductivity, ease of synthesis, excellent redox potentials, chemical and thermal stability. This review highlights the various metal/PANI nanocomposites, their various synthesis techniques and their application in sensors and biosensors. The importance of these nanocomposites in sensing and signaling various toxic heavy metals such as mercury, lead and silver and toxic gases such as hydrogen sulphide, ammonia and chloroform has been discussed. In addition the review covers the applications of metal/PANI nanocomposites in biosensor systems for the detection of glucose, DNA, protein, cholesterol, drugs and hydrogen peroxide.  相似文献   

19.
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.  相似文献   

20.
New silver-containing nanocomposites different in their dispersity of metal were synthesized on the basis of strongly and weakly basic anion-exchange resins. The chemical activity of the nanocomposites with respect to oxygen dissolved in water was investigated. It was shown that silver nanoparticles in samples based on strongly basic anion exchangers and weakly basic anion exchangers in the NO3 salt form are not oxidized by oxygen; for weakly basic matrices in the free amine form, this process occurs to only a small extent. The resistance to oxygen is explained by inhibition of processes of formation of silver oxides. Nanocomposites based on strongly basic anion-exchange resins are recommended for testing as to catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号