首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1?xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.  相似文献   

2.
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core–shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core–shell nanoparticles, we have realized upconversion emission of Mn2+ at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn2+emission, enabled by trapping the excitation energy through a Gd3+ lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd3+ at 310 nm (6P7/28S7/2). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn2+ doping in the lanthanide‐based host lattice arising from the formation of F? vacancies around Mn2+ ions to maintain charge neutrality in the shell layer.  相似文献   

3.
A novel orange‐yellow‐emitting Ba3Gd(PO4)3:x Eu2+,y Mn2+ phosphor is prepared by high‐temperature solid‐state reaction. The crystal structure of Ba3Gd(PO4)3:0.005 Eu2+,0.04 Mn2+ is determined by Rietveld refinement analysis on powder X‐ray diffraction data, which shows that the cations are disordered on a single crystallographic site and the oxygen atoms are distributed over two partially occupied sites. The photoluminescence excitation spectra show that the developed phosphor has an efficient broad absorption band ranging from 230 to 420 nm, perfectly matching the characteristic emission of UV‐light emitting diode (LED) chips. The emission spectra show that the obtained phosphors possess tunable color emissions from yellowish‐green through yellow and ultimately to reddish‐orange by simply adjusting the Mn2+ content (y) in Ba3Gd(PO4)3:0.005 Eu2+,y Mn2+ host. The tunable color emissions origin from the change in intensity between the 4f–5d transitions in the Eu2+ ions and the 4T16A1 transitions of the Mn2+ ions through the energy transfer from the Eu2+ to the Mn2+ ions. In addition, the mechanism of the energy transfer between the Eu2+ and Mn2+ ions are also studied in terms of the Inokuti–Hirayama theoretical model. The present results indicate that this novel orange‐yellow‐emitting phosphor can be used as a potential candidate for the application in white LEDs.  相似文献   

4.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6-3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.  相似文献   

5.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

6.
Sodium layered P2‐stacking Na0.67MnO2 materials have shown great promise for sodium‐ion batteries. However, the undesired Jahn–Teller effect of the Mn4+/Mn3+ redox couple and multiple biphasic structural transitions during charge/discharge of the materials lead to anisotropic structure expansion and rapid capacity decay. Herein, by introducing abundant Al into the transition‐metal layers to decrease the number of Mn3+, we obtain the low cost pure P2‐type Na0.67AlxMn1?xO2 (x=0.05, 0.1 and 0.2) materials with high structural stability and promising performance. The Al‐doping effect on the long/short range structural evolutions and electrochemical performances is further investigated by combining in situ synchrotron XRD and solid‐state NMR techniques. Our results reveal that Al‐doping alleviates the phase transformations thus giving rise to better cycling life, and leads to a larger spacing of Na+ layer thus producing a remarkable rate capability of 96 mAh g‐1 at 1200 mA g‐1.  相似文献   

7.
We report an efficient approach to assemble a variety of electrostatically stabilized all‐inorganic semiconductor nanocrystals (NCs) by their linking with appropriate ions into multibranched gel networks. These all‐inorganic non‐ordered 3D assemblies benefit from strong interparticle coupling, which facilitates charge transport between the NCs with diverse morphologies, compositions, sizes, and functional capping ligands. Moreover, the resulting dry gels (aerogels) are highly porous monolithic structures, which preserve the quantum confinement of their building blocks. The inorganic semiconductor aerogel made of 4.5 nm CdSe colloidal NCs capped with I? ions and bridged with Cd2+ ions had a large surface area of 146 m2 g?1.  相似文献   

8.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

9.
Lead‐free perovskite nanocrystals (NCs) were obtained mainly by substituting a Pb2+ cation with a divalent cation or substituting three Pb2+ cations with two trivalent cations. The substitution of two Pb2+ cations with one monovalent Ag+ and one trivalent Bi3+ cations was used to synthesize Cs2AgBiX6 (X=Cl, Br, I) double perovskite NCs. Using femtosecond transient absorption spectroscopy, the charge carrier relaxation mechanism was elucidated in the double perovskite NCs. The Cs2AgBiBr6 NCs exhibit ultrafast hot‐carrier cooling (<1 ps), which competes with the carrier trapping processes (mainly originate from the surface defects). Notably, the photoluminescence can be increased by 100 times with surfactant (oleic acid) added to passivate the defects in Cs2AgBiCl6 NCs. These results suggest that the double perovskite NCs could be potential materials for optoelectronic applications by better controlling the surface defects.  相似文献   

10.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

11.
Magnetic and luminescent bifunctional divalent europium nanocrystals (Eu2+ NCs) are a promising class of novel advanced materials that have various applications in magneto‐optic devices, catalysis, bioimaging, and solar cells. In the past few decades, much work has been carried out to study the synthesis, properties, and applications of Eu2+ NCs. The aim of this Minireview is to present the progress in preparing Eu2+ NCs based on the reported research, by describing the advantages and disadvantages of the synthesis methods. The morphologies and size are controlled through adjusting the experimental conditions. Eu2+ NCs show superior magnetic and luminescence properties simultaneously. Self‐assembly and doping with other ions are important routes to improve their magnetic and luminescence properties. Their applications in magneto‐optic devices are discussed. Some difficulties and challenges in the fabrication of Eu2+ NCs are discussed, such as water‐soluble Eu2+ NCs and tunable luminescence in the whole visible region.  相似文献   

12.
Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor with whitlockite‐type structure was prepared by a combustion‐assisted solid‐state reaction. The crystal structure and luminescence properties were investigated. Under UV radiation, Sr8MgCe(PO4)7 host exhibits a violet‐blue emission band from Ce3+ ions. When Eu2+/Mn2+ are doped into the host, the samples excited with 270 nm UV radiation present multicolor emissions due to the energy transfer (ET) from Ce3+ to Eu2+/Mn2+. The emitting color of Sr8MgCe(PO4)7:Eu2+ can be tuned from violet‐blue to yellow‐green, whereas Sr8MgCe(PO4)7:Mn2+ can emit red light. Under excitation with long wavelength at 360 nm, Sr8MgCe(PO4)7:Eu2+ phosphor shows a broadband emission from 390 to 700 nm, which is attributed to the 4f65d1→4f7 transition of Eu2+ without the contribution from Ce3+ emission. Tunable full‐color emitting light can be achieved in the Eu2+ and Mn2+‐codoped Sr8MgCe(PO4)7 phosphor by ETEu–Mn through control of the levels of doped Eu2+ and Mn2+ ions. These results suggest that Sr8MgCe(PO4)7:Eu2+,Mn2+ phosphor has potential applications in NUV chip pumped white LEDs.  相似文献   

13.
《中国化学会会志》2017,64(4):440-448
Praseodymium (Pr3+)‐doped YF3 (core) and LaF3 ‐covered YF3 :Pr (core–shell) nanocrystals (NCs ) were prepared successfully by an ecofriendly, polyol‐based, co‐precipitation process, which were then coated with a silica shell by using a sol–gel‐based Stober method. X‐ray diffraction (XRD), transmission electron microscopy (TEM ), thermal analysis, Fourier transform infrared (FTIR) , UV /vis, energy bandgap, and photoluminescence studies were used to analyze the crystal structure, morphology, and optical properties of the nanomaterial. XRD and TEM results show that the grain size increases after sequential growth of crystalline LaF3 and the silica shell. The silica surface modification enhances the solubility and colloidal stability of the core–shell‐SiO2 NCs . The results indicate that the surface coating affects the optical properties because of the alteration in crystalline size of the materials. The emission intensity of silica‐modified NCs was significantly enhanced compared to that of core and core–shell NCs . These results are attributed to the formation of chemical bonds between core–shell and noncrystalline SiO2 shell via La–O–Si bridges, which activate the “dormant” Pr3+ ions on the surfaces of the nanoparticles. The luminescence efficiency of the as‐prepared core, core–shell, and core–shell‐SiO2 NCs are comparatively analyzed, and the observed differences are justified on the basis of the surface modification surrounding the luminescent seed core NCs .  相似文献   

14.
The high‐pressure synthesis of a manganese oxyhydride LaSrMnO3.3H0.7 is reported. Neutron and X‐ray Rietveld analyses showed that this compound adopts the K2NiF4 structure with hydride ions positioned exclusively at the equatorial site. This result makes a striking contrast to topochemical reductions of LaSrMnO4 that result in only oxygen‐deficient phases down to LaSrMnO3.5. This suggests that high H2 pressure plays a key role in stabilizing the oxyhydride phase, offering an opportunity to synthesize other transition‐metal oxyhydrides. Magnetic susceptibility revealed a spin‐glass transition at 24 K that is due to competing ferromagnetic (Mn2+–Mn3+) and antiferromagnetic (Mn2+–Mn2, Mn3+–Mn3+) interactions.  相似文献   

15.
The dicyanamide‐bridged polymers with Schiff‐base ligand, [CoNaL(dca)]n ( 1 ) and [Mn2L(dca)2]n ( 2 ) [H2L = bis(3‐methoxysalicylidene)benzene‐1,2‐diamine, dca = dicyanamide] were synthesized and characterized by elemental analyses, IR spectrroscopy and single‐crystal X‐ray diffraction. The solid‐state structures reveal that polymer 1 has double dca bridged loop‐like 1D chains, in which the heterodinuclear Co2+‐Na+ units (LCoNa) are bridged by dca with coordination mode μ1,3,5. In polymer 2 , homodinuclear Mn2+‐Mn2+(LMnMn) units are linked by dca in μ1,5‐bridging mode to form 2D planes. Magnetic susceptibility studies on 2 reveals antiferromagnetic coupling interactions between the adjacent Mn2+ ions in the LMnMn unit.  相似文献   

16.
《化学:亚洲杂志》2018,13(18):2649-2663
In this work, reciprocal energy transfer between Mn2+ and Eu2+ ions in nitride SrAlSi4N7 has been found and investigated in detail. In contrast to Mn2+‐ and Eu2+‐activated oxide‐based phosphors, the red light centered at 608 nm is ascribed to 4f–5d transitions of Eu2+ ions and Mn2+‐activated SrAlSi4N7 emits a cyan light peaking at 500 nm. Additionally, the special broad excitation band of SrAlSi4N7:Mn2+ centered at 362 nm has been covered by that of Eu2+ ions ranging from 300 to 550 nm. The overlap of the energy level of Mn2+ and Eu2+ ions creates the conditions for reciprocal energy transfer between Eu2+ and Mn2+ ions. A series of SrAlSi4N7:0.002 Mn2+,xEu2+ (0≤x≤005) with tunable light emission have been synthesized and the decay curves of samples prove the reciprocal occurrence of the energy transfer between Mn2+ and Eu2+ ions. This mode of energy transfer not only prevents the loss of energy, but also improves the thermal stability, and the intensity of SrAlSi4N7:Mn2+,Eu2+ at 150 °C is still beyond 92 % of the initial intensity. The results provide a new mode of energy transfer, which is expected to reduce the drawbacks existing in energy transfer.  相似文献   

17.
Doping in perovskite nanocrystals adopts different mechanistic approach in comparison to widely established doping in chalcogenide quantum dots. The fast formation of perovskites makes the dopant insertions more competitive and challenging. Introducing alkylamine hydrochloride (RNH3Cl) as a promoting reagent, precise controlled doping of MnII in CsPbCl3 perovskite nanocrystals is reported. Simply, by changing the amount of RNH3Cl, the Mn incorporation and subsequent tuning in the excitonic as well as Mn d–d emission intensities are tailored. Investigations suggested that RNH3Cl acted as the chlorinating source, controlled the size, and also helps in increasing the number of particles. This provided more opportunity for Mn ions to take part in reaction and occupied the appropriate lattice positions. Carrying out several reactions with varying reaction parameters, the doping conditions are optimized and the role of the promoting reagent for both doped and undoped systems are compared.  相似文献   

18.
DNA has been used as a scaffold to stabilize small, atomically monodisperse silver nanoclusters, which have attracted attention due to their intriguing photophysical properties. Herein, we describe the X‐ray crystal structure of a DNA‐encapsulated, near‐infrared emitting Ag16 nanocluster (DNA–Ag16NC). The asymmetric unit of the crystal contains two DNA–Ag16NCs and the crystal packing between the DNA–Ag16NCs is promoted by several interactions, such as two silver‐mediated base pairs between 3′‐terminal adenines, two phosphate–Ca2+–phosphate interactions, and π‐stacking between two neighboring thymines. Each Ag16NC is confined by two DNA decamers that take on a horse‐shoe‐like conformation and is almost fully shielded from the solvent environment. This structural insight will aid in the determination of the structure/photophysical property relationship for this class of emitters and opens up new research opportunities in fluorescence imaging and sensing using noble‐metal clusters.  相似文献   

19.
In situ X‐ray absorption fine structure (XAFS) analyses were performed on rechargeable molecular cluster batteries (MCBs), which were formed by a lithium anode and cathode‐active material, [Mn12O12(CH3CH2C(CH3)2COO)16(H2O)4] with tert‐pentyl carboxylate ligand (abbreviated as Mn12tPe), and with eight Mn3+ and four Mn4+ centers. This mixed valence cluster compound is used in an effort to develop a reusable in situ battery cell that is suitable for such long‐term performance tests. The Mn12tPe MCBs exhibit a large capacity of approximately 210 Ah kg−1 in the voltage range V=4.0–2.0 V. The X‐ray absorption near‐edge structure (XANES) spectra exhibit a systematic change during the charging/discharging with an isosbestic point at 6555 eV, which strongly suggests that only either the Mn3+ or Mn4+ ions in the Mn12 skeleton are involved in this battery reaction. The averaged manganese valence, determined from the absorption‐edge energy, decreased monotonically from 3.3 to 2.5 in the first half of the discharging (4.0>V>2.8 V), but changed little in the second half (2.8>V>2.0 V). The former valence change indicates a reduction of the initial [Mn12]0 state by approximately ten electrons, which corresponds well with the half value of the observed capacity. Therefore, the large capacity of the Mn12 MCBs can be understood as being due to a combination of the redox change of the manganese ions and presumably a capacitance effect. The extended X‐ray absorption fine structure (EXAFS) indicates a gradual increase of the Mn2+ sites in the first half of the discharging, which is consistent with the XANES spectra. It can be concluded that the Mn12tPe MCBs would include a solid‐state electrochemical reaction, mainly between the neutral state [Mn12]0 and the super‐reduced state [Mn12]8− that is obtained by a local reduction of the eight Mn3+ ions in Mn12 toward Mn2+ ions.  相似文献   

20.
Composition‐adjustable spinel‐type metal oxides, MnxCo3?xO4?δ (x=0.8–1.4), were synthesized in ethanol solutions by a rapid inorganic self‐templating mechanism using KCl nanocrystals as the structure‐directing agent. The MnxCo3?xO4?δ materials showed ultrahigh oxygen evolution activity and strong durability in alkaline solutions, and are capable of delivering a current density of 10 mA cm?2 at 1.58 V versus the reversible hydrogen electrode in 0.1 M KOH solution, which is superior in comparison to IrO2 catalysts under identical experimental conditions, and comparable to the most active noble‐metal and transition‐metal oxygen evolution electrocatalysts reported so far. The high performance for catalytic oxygen evolution originates from both compositional and structural features of the synthesized materials. The moderate content of Mn doping into the spinel framework led to their improved electronic conductivity and strong oxidizing ability, and the well‐developed porosity, accompanied with the high affinity between OH? reactants and catalyst surface, contributed to the smooth mass transport, thus endowing them with superior oxygen evolution activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号