首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.  相似文献   

2.
Hole or electron doping of phases prepared by topochemical reactions (e.g. anion deintercalation or anion‐exchange) is extremely challenging as these low‐temperature conversion reactions are typically very sensitive to the electron counts of precursor phases. Herein we report the successful hole and electron doping of the transition‐metal oxyhydride LaSr3NiRuO4H4 by first preparing precursors in the range LaxSr4?xNiRuO8 0.5<x<1.4 and then converting into the corresponding LaxSr4?xNiRuO4H4 phases. This is particularly noteworthy as the (Ni/Ru)H2 sheets in the LaxSr4?xNiRuO4H4 phases are structurally analogous to the CuO2 sheets in cuprate superconductors and hole doping (Ni1+/2+, Ru2+) or electron doping (Ni2+, Ru1+/2+) yields materials with partial occupancy in Ni/Ru –H 1s bands which are analogous to the partially occupied Cu –O 2p bands present in the CuO2 sheets of doped superconducting cuprates.  相似文献   

3.
We report a new molecular‐design principle for creating double‐gyroid nanostructured molecular assemblies based on atropisomerization. Ionic amphiphiles containing two imidazolium rings close to each other were designed and synthesized. NMR data revealed that the rotation of the imidazolium rings is restricted, with an activation energy as high as 63 kJ mol?1 in DMSO‐d6 solution (DFT prediction for a model compound in the vacuum: 90–100 kJ mol?1). Due to the restricted rotation, the amphiphiles feature “double” atropisomeric axes in their ionic segments and form three stable atropisomers: meso, R, and S. These isomers co‐organize into ‐type bicontinuous cubic liquid‐crystalline mesophases through nanosegregation of the ionic and non‐ionic parts. Considering the intrinsic characteristic of ‐type bicontinuous cubic structures that they are composed of intertwined right‐ and left‐handed single gyroids, we propose that the simultaneous presence of both R‐ and S‐atropisomers is an important contributor to the formation of double‐gyroid structures.  相似文献   

4.
Conducting polymers with high theoretical capacitance and deformability are among the optimal candidates for compressible supercapacitor electrode materials. However, achieving both mechanical and electrochemical stabilities in a single electrode remains a great challenge. To address this issue, the “Polymer Chainmail” is proposed with reversible deformation capability and enhances stability because of the steric hindrance and charge compensation effect of doped anions. As a proof of concept, four common anions are selected as dopants for Poly(3,4-ethylenedioxythiophene) (PEDOT), and their effects on the adsorption and diffusion of H+ on PEDOT are verified using density functional theory calculations. Owing to the film formation effect, the doped PEDOT/nitrogen-doped carbon foam exhibits good mechanical properties. Furthermore, the composite demonstrates excellent rate performance and stability due to suitable anion doping. This finding provides new insights into the preparation of electrochemically stable conductive polymer-based compressible electrode materials.  相似文献   

5.
It was discovered that phosphazenyl phosphines (PAPs) can be stronger P‐superbases than the corresponding Schwesinger type phosphazene N‐superbases. A simple synthetic access to this class of PR3 derivatives including their homologization is described. XRD structures, proton affinities (PA), and gas‐phase basicities (GB) as well as calculated and experimental pK values in THF are presented. In contrast to their N‐basic counterparts, PAPs are also privileged ligands in transition metal chemistry. In fact, they are currently the strongest uncharged P‐donors known, exceeding classical and more recently discovered ligands such as PtBu3 and imidazolin‐2‐ylidenaminophosphines (IAPs) with respect to their low Tolman electronic parameters (TEPs) and large cone angles.  相似文献   

6.
7.
A battery cathode based on the superoxide/peroxide redox not only inherits the advantage of oxygen (O2) batteries in high capacities and low costs but also overcomes the disadvantages in O2 storage, electrolyte evaporation, and anode deactivation due to O2 crossover. Herein, we report an enhanced potassium superoxide (KO2)/peroxide (K2O2) conversion by adopting a high-donicity anion additive in the ether-based electrolyte. Such an anion was synthesized via a “Solvent-in-Anion” strategy and validated to enhance the electron donicity of the electrolyte. The use of high-donicity anion could lead to enhanced KO2 utilization (≈90.2 %) by retarding electrode passivation and allow the full charging back of K2O2 through the solution-mediated pathway without electrocatalysts. No apparent cell degradation is observed during the first 120 cycles by controlling the reversible depth-of-discharge capacity at 292 mAh g−1 within an O2-free region. The K−KO2 cell delivers a high energy efficiency (>84.4 %) and a lifespan of over 1440 hours.  相似文献   

8.
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non‐radiative energy loss ( ) is the dominant factor that hinders further improvements in state‐of‐the‐art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge‐transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.  相似文献   

9.
N-Type thermoelectrics typically consist of small molecule dopant+polymer host. Only a few polymer dopant+polymer host systems have been reported, and these have lower thermoelectric parameters. N-type polymers with high crystallinity and order are generally used for high-conductivity ( ) organic conductors. Few n-type polymers with only short-range lamellar stacking for high-conductivity materials have been reported. Here, we describe an n-type short-range lamellar-stacked all-polymer thermoelectric system with highest of 78 S−1, power factor (PF) of 163 μW m−1 K−2, and maximum Figure of merit (ZT) of 0.53 at room temperature with a dopant/host ratio of 75 wt%. The minor effect of polymer dopant on the molecular arrangement of conjugated polymer PDPIN at high ratios, high doping capability, high Seebeck coefficient (S) absolute values relative to , and atypical decreased thermal conductivity ( ) with increased doping ratio contribute to the promising performance.  相似文献   

10.
CO2‐responsive spin‐state conversion between high‐spin (HS) and low‐spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII(COO‐terpy)2]?4 H2O ( 1?4 H2O ), stably formed cavities generated via π–π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1?4 H2O transformed to solvent‐free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate‐open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2‐accomodated form 1?CO2 (P =110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin‐state conversion by introducing/evacuating CO2 gas into/from 1 .  相似文献   

11.
LiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li-O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI-added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr-added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li-O2 batteries.  相似文献   

12.
Attempted preparation of a chelated CoII β‐silylamide resulted in the unprecedented disproportionation to Co0 and a spirocyclic cobalt(IV) bis(β‐silyldiamide): [Co[(NtBu)2SiMe2]2] ( 1 ). Compound 1 exhibited a room‐temperature magnetic moment of 1.8 B.M. and a solid‐state axial EPR spectrum diagnostic of a rare S= configuration for tetrahedral CoIV. Ab initio semicanonical coupled‐cluster calculations (DLPNO‐CCSD(T)) revealed the doublet state was clearly preferred (?27 kcal mol?1) over higher spin configurations only for the bulky tert‐butyl‐substituted analogue. Unlike other CoIV complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self‐limiting monolayer in preliminary atomic layer deposition (ALD) surface saturation experiments. The ease of synthesis and high stability make 1 an attractive starting point to investigate otherwise inaccessible CoIV intermediates and for synthesizing new materials.  相似文献   

13.
Electrochemical reduction of CO2 into various chemicals and fuels provides an attractive pathway for environmental and energy sustainability. It is now shown that a FeP nanoarray on Ti mesh (FeP NA/TM) acts as an efficient 3D catalyst electrode for the CO2 reduction reaction to convert CO2 into alcohols with high selectivity. In 0.5 m KHCO3, such FeP NA/TM is capable of achieving a high Faradaic efficiency (FE ) up to 80.2 %, with a total FE of 94.3 % at ?0.20 V vs. reversible hydrogen electrode. Density functional theory calculations reveal that the FeP(211) surface significantly promotes the adsorption and reduction of CO2 toward CH3OH owing to the synergistic effect of two adjacent Fe atoms, and the potential‐determining step is the hydrogenation process of *CO.  相似文献   

14.
Selective C –C couplings are powerful strategies for the rapid and programmable construction of bi‐ or multiaryls. To this end, the next frontier of synthetic modularity will likely arise from harnessing the coupling space that is orthogonal to the powerful Pd‐catalyzed coupling regime. This report details the realization of this concept and presents the fully selective arylation of aryl germanes (which are inert under Pd0/PdII catalysis) in the presence of the valuable functionalities C?BPin, C?SiMe3, C?I, C?Br, C?Cl, which in turn offer versatile opportunities for diversification. The protocol makes use of visible light activation combined with gold catalysis, which facilitates the selective coupling of C?Ge with aryl diazonium salts. Contrary to previous light‐/gold‐catalyzed couplings of Ar–N2+, which were specialized in Ar–N2+ scope, we present conditions to efficiently couple electron‐rich, electron‐poor, heterocyclic and sterically hindered aryl diazonium salts. Our computational data suggest that while electron‐poor Ar–N2+ salts are readily activated by gold under blue‐light irradiation, there is a competing dissociative deactivation pathway for excited electron‐rich Ar–N2+, which requires an alternative photo‐redox approach to enable productive couplings.  相似文献   

15.
Nonlinear optical (NLO) switch materials that turn on/off second-harmonic generation (SHG) at a phase transition temperature (Tc) are promising for applications in the fields of photoswitching and optical computing. However, precise control of Tc remains challenging, mainly because a linearly tunable Tc has not been reported to date. Herein, we report a unique selenate, tetragonal P 21c [Ag(NH3)2]2SeO4 with a=b=8.5569(2) Å and c=6.5208(2) Å that exhibits a strong SHG intensity (1.3×KDP) and a large birefringence (Δnobv.=0.08). This compound forms a series of isostructural solid-solution crystals [Ag(NH3)2]2SxSe1−xO4 (x=0–1.00) that exhibit excellent NLO switching performance and an unprecedented linearly tunable spanning 430 to 356 K. The breaking of localized hydrogen bonds between SeO42− and the cation triggers a phase transition accompanied by hydrogen bond length changes with increasing x and a linear change in the enthalpy .  相似文献   

16.
A phosphor emitting both white light and broad near-infrared (NIR) radiation can simultaneously provide visual inspection and early signs of rotting of food products. The broad NIR emission is absorbed by the vibrational overtones of water molecules present in food items, providing the non-invasive image contrast to assess the food freshness. Here we design a phosphor, namely, Cr3+-Bi3+-codoped Cs2Ag0.6Na0.4InCl6, that simultaneously emit warm white light and broad NIR (1000 nm) radiation with quantum yield 27 %. This dual emitter is designed by combining the features of s2-electron (Bi3+) and d3-electron (Cr3+) doping in a weak crystal field of the halide perovskite host. excitation of Bi3+, using a commercial 370 nm ultraviolet light-emitting-diodes (UV-LED), yields both the emissions. A fraction of the excited Bi3+ dopants emit the warm white light, and the other fraction transfers its energy non-radiatively to Cr3+. Then the Cr3+ de-excites emitting broad NIR emission. Temperature dependent (6.4–300 K) photoluminescence in combination with Tanabe-Sugano diagram show that the Cr3+ experiences a weak crystal field ( =2.2), yielding the NIR emission. As a proof of concept, we fabricated a panel containing 122 phosphor-converted LEDs, demonstrating its capability to inspect food products.  相似文献   

17.
Crystals of the first sodalite‐type zeolite containing an all‐iron framework, a ferrolite, Ba8(Fe12O24)Nay(OH)6?x H2O, were synthesized using the hydroflux method in nearly quantitative yield. Ba8(Fe12O24)Nay(OH)6?x H2O crystallizes in the cubic space group with a=10.0476(1) Å. Slightly distorted FeO4 tetrahedra are linked to form Fe4O4 and Fe6O6 rings, which in turn yield channels and internal cavities that are characteristic of the sodalite structure. Barium, sodium, and hydroxide ions and water molecules are found in the channels and provide charge balance. Magnetic measurements indicate that the ferrolite exhibits magnetic order up to at least 700 K, with the field‐cooled and zero‐field‐cooled curves diverging. Analysis of the 57Fe Mössbauer spectra revealed two spectral components that have equal spectral areas, indicating the presence of two subsets of iron centers in the structure. Dehydrated versions of the ferrolite were also prepared by heating the sample.  相似文献   

18.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N?1, and pyroelectric coefficient of p≈25.8 μC m?2 K?1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

19.
High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC) but form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.  相似文献   

20.
Atom‐economic and regioselective C ?C bond formation has been achieved by rapid C?H alkylation of unprotected secondary arylamines with unactivated alkenes. The combination of Ta(CH2SiMe3)3Cl2, and a ureate N,O‐chelating‐ligand salt gives catalytic systems prepared in situ that can realize high yields of β‐alkylated aniline derivatives from either terminal or internal alkene substrates. These new catalyst systems realize C?H alkylation in as little as one hour and for the first time a 1:1 stoichiometry of alkene and amine substrates results in high yielding syntheses of isolated amine products by simple filtration and concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号