首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The reaction of tetrakis(2‐tert‐butyl‐4, 5, 6‐trimethylphenyl)digermene, which dissociates into germylene molecules in solution, with hexafluorobut‐2‐yne furnishes the corresponding germacyclopropene 3 by a [1+2] cycloaddition of the germylene to the C≡C triple bond. The X‐ray structure analysis of 3 reveals a short C=C double bond length of 132.4(5) pm and an acute C—Ge—C bond angle of 39.93(14)°.  相似文献   

2.
An in‐depth study of the cobalt‐catalyzed [2+2+2] cycloaddition between yne‐ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal‐catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron‐deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne‐ynamide allows the regioselectivity to be switched toward 3‐ or 4‐aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne‐ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3‐aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4‐aminopyridines arise from an insertion pathway.  相似文献   

3.
1,3‐Enyne structural motifs are versatile building blocks in organic synthesis and occur widely in various natural products with many of them being highly active as cytotoxic macrolides and antitumour antibiotics. This article presents the crystal structure of three 1,1,4‐triphenyl‐substituted 1,3‐enynes, viz. 4‐(2‐methylphenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C23H18 ( 1 ), 4‐(2‐methoxyphenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C23H18O ( 2 ), and 4‐(4‐nitrophenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C22H15NO2 ( 3 ). The benzene ring at position 4 of the but‐1‐en‐3‐yne group bears a weakly activating methyl group in compound 1 , a moderately activating methoxy group in 2 and a strongly deactivating nitro group in 3 . The crystal structures of 1 and 3 both have monoclinic symmetry, while that of 2 is orthorhombic, and all of them have one molecule in the asymmetric unit. All three compounds were investigated for their antibacterial and antifungal activities. Interestingly, enyne 2 is the only compound tested that inhibited the growth of Aspergillus niger.  相似文献   

4.
The anionic polymerization of derivatives of 4‐phenyl‐1‐buten‐3‐yne was carried out to investigate the effect of substituents on the polymerization behavior. The polymerization of 4‐(4‐fluorophenyl)‐1‐buten‐3‐yne and 4‐(2‐fluorophenyl)‐1‐buten‐3‐yne in tetrahydrofuran at −78 °C with n‐BuLi/sparteine as an initiator gave polymers consisting of 1,2‐ and 1,4‐polymerized units in quantitative yields with ratios of 80/20 and 88/12, respectively. The molecular weights of the polymers were controlled by the ratio of the monomers to n‐BuLi, and the distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), supporting the living nature of the polymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1016–1023, 2001  相似文献   

5.
化学生物学新前沿——化学蛋白质组学   总被引:7,自引:0,他引:7  
周兴旺 《化学进展》2003,15(6):518-522
随着包括人类在内的主要模式生物的基因组计划的完成,生命科学的研究重心转向蛋白质组的研究--在对应基因组的整体蛋白质水平上系统研究调控细胞生命活动的蛋白质.化学蛋白质组学是化学生物学在后基因组时代的最新发展:化学蛋白质组学利用化学小分子为工具和手段,以基于靶蛋白质功能的新战略探测体内蛋白质组,是新一代的功能蛋白质组学.本文综述了化学蛋白质组学的最新进展、有关技术及其在生物医学和药物研发等方面的应用,并对化学蛋白质组学的发展趋势和前景进行了讨论.  相似文献   

6.
Organometallic Compounds of Copper. XX On the Reaction of the Alkyne Copper(I) Complexes [CuCl(S‐Alkyne)] and [Cu2Br2(S‐Alkyne)(dms)] (S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne; dms = Dimethylsulfide) with the Lithiumorganyls Phenyllithium und Fluorenyllithium The alkyne copper(I) bromide complex [Cu2Br2(S‐Alkyne)(dms)] ( 3 b ) (S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; dms = dimethylsulfide) reacts with phenyllithium to form a tetranuclear copper(I) complex of the composition [Cu4(C6H5)2(S‐Alkenyl)2] ( 7 ) in low yield (4%). The reaction of the alkyne copper(I) chloride complex [CuCl(S‐Alkyne)] ( 2 a ) with fluorenyllithium in tetrahydrofuran (thf) affords a lithium cuprate of the composition [Li(thf)4]+ [Cu2(fluorenyl)3(S‐Alkyne)2] ( 8 ) (yield 32%). The structures of both new complexes 7 and 8 were determined by X–ray diffraction.  相似文献   

7.
Sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used as a facile and quantitative method for modifying end‐groups on an N‐isopropylacrylamide (NIPAm) homopolymer. A well‐defined precursor of polyNIPAm (PNIPAm) was prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization in DMF at 70 °C using the 1‐cyano‐1‐methylethyl dithiobenzoate/2,2′‐azobis(2‐methylpropionitrile) chain transfer agent/initiator combination yielding a homopolymer with an absolute molecular weight of 5880 and polydispersity index of 1.18. The dithiobenzoate end‐groups were modified in a one‐pot process via primary amine cleavage followed by phosphine‐mediated nucleophilic thiol‐ene click reactions with either allyl methacrylate or propargyl acrylate yielding ene and yne terminal PNIPAm homopolymers quantitatively. The ene and yne groups were then modified, quantitatively as determined by 1H NMR spectroscopy, via radical thiol‐ene and radical thiol‐yne reactions with three representative commercially available thiols yielding the mono and bis end functional NIPAm homopolymers. This is the first time such sequential thiol‐ene/thiol‐ene and thiol‐ene/thiol‐yne reactions have been used in polymer synthesis/end‐group modification. The lower critical solution temperatures (LCST) were then determined for all PNIPAm homopolymers using a combination of optical measurements and dynamic light scattering. It is shown that the LCST varies depending on the chemical nature of the end‐groups with measured values lying in the range 26–35 °C. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3544–3557, 2009  相似文献   

8.
The anionic polymerization behavior of 2‐methyl‐4‐phenyl‐1‐buten‐3‐yne (2) was investigated to get information on the effect of substituent at the 2‐position. The polymerization of 2 did not proceed in tetrahydrofuran at –78°C by lithium initiators, while sodium initiators can conduct the polymerization smoothly to give polymers consisting of a specific 1,2‐polymerized unit. The living nature of the polymerization of 2 by diphenylmethylsodium was supported by the post‐polymerization experiment.  相似文献   

9.
Both (intermolecular) photocycloadditions of 2H‐1‐benzopyran‐ and 2H‐1‐benzothiopyran‐3‐carbonitriles to 2,3‐dimethylbut‐2‐ene and 2‐methylbut‐1‐en‐3‐yne, and (intramolecular) photoisomerization of 4‐(alkenyl)benzopyran‐3‐carbonitriles were investigated. In contrast to 2H‐1‐benzopyran‐3‐carbonitrile ( 1 ), its thia analog 4 reacts with 2,3‐dimethylbut‐2‐ene selectively, to afford only cyclobuta derivative 7 . In the presence of 2‐methylbut‐1‐en‐3‐yne, both 1 and 4 behave alike to afford the all‐cis‐cyclobuta diastereoisomers, 15 and 8 , respectively, as main products, as well as minor amounts of cyclobutenes 17 and 10 , respectively, which result from the addition of the terminal C‐atom of the acetylenic bond to C(3) of the heterocycle. 4‐Methyl‐2H‐1‐benzopyran‐3‐carbonitrile ( 5 ) does not undergo photoaddition to the alkene or the alkenyne mentioned above, whereas the corresponding intramolecular [2+2] photocycloaddition of 4‐(pent‐4‐enyl)benzopyran‐3‐carbonitrile ( 6b ) to tetracycle 20 proceeds quantitatively.  相似文献   

10.
A series of novel comb polymers, poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene}‐g‐polystyrene (PMPCS‐g‐PS), with mesogen‐jacketed rigid side chains were synthesized by the “grafting onto” method from α‐yne‐terminated PMPCS (side chain) and poly(vinylbenzyl azide) (backbone) by Cu(I)‐catalyzed 1,3‐dipolar cycloaddition click reaction. The α‐yne‐terminated PMPCS was synthesized by Cu(I)‐catalyzed atom transfer radical polymerization initiated by a yne‐functional initiator. Poly(vinylbenzyl azide) was prepared by polymerizing vinylbenzyl chloride using nitroxide mediated radical polymerization to obtain poly(vinylbenzyl chloride) as the precursor which was then converted to the azide derivative. The chemical structure and architectures of PMPCS comb polymers were confirmed by 1H NMR, gel permeation chromatography, and multiangle laser light scattering. Both surface morphologies and solution behaviors were investigated. Surface morphologies of PMPCS combs on different surfaces were investigated by scanning probe microscopy. PMPCS combs showed different aggregation morphologies when depositing on silicon wafers with/without chemical modification. The PMPCS comb polymers transferred to polymer‐modified silicon wafers using the Langmuir‐Blodgett technique showed a worm‐like chain conformation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
The reaction of the alpha and beta forms of C3S5(2-) with thiophosgene yields two isomeric carbon sulfides alpha,alpha-C4S6 and alpha,beta-C4S6, respectively. The crystal structures of both compounds could be determined for the first time. Both structures are made up of almost planar molecules. The alpha,alpha-isomer (1,3-dithiolo-(4,5-d)-1,3-dithol-2,5-dithione) is D2h-symmetric, while the alpha,beta-isomer is approximately Cs-symmetric. In the molecules of both isomers the two different C3S5 units are retained without significant alterations of structural parameters. alpha,alpha-C4S6 is unstable with respect to alpha,beta-C4S6. The molecular rearrangement can be induced by a short thermal treatment at 150 degrees C. Significant differences are found in the mass spectra fragmentation patterns. Only alpha,beta-C4S6 shows an intense signal for C3S2+ and is therefore a potential source for the synthesis of carbon subsulfide via flash vacuum pyrolysis. Only alpha,beta-C4S6 forms a stable adduct with I2. alpha,beta-C4S6.I2 was already known (F. L. Lu, K. M. Keshavarz-K, G. Srdanov, R. H. Jacobson and F. Wudl, J. Org. Chem., 1989, 54, 2165, ), but a second polymorph is formed on crystallisation from a different solvent. The two polymorphic forms do not show differences in the structures of the individual molecules but show a different packing pattern. alpha,beta-C4S6.I2 is remarkably thermally stable. Thermal analysis shows that I2 cleavage occurs in that temperature region above 200 degrees C when C-S bonds are broken and CS2 and I2 are simultaneously liberated. Performed at 270 degrees C thermolysis of alpha,beta-C4S6.I2 yields under cleavage of I2 and CS2 a black polymeric carbon sulfide (CS)x which is probably a mixture of graphitic carbon and unidentified amorphous polymeric carbon sulfides.  相似文献   

12.
Graphene nanoribbon is a novel variety of graphene with high length‐to‐width ratio and straight edges. Herein, we report an improved method for the synthesis of graphene oxide nanoribbons (GONRs) from longitudinal unraveling of multiwalled carbon nanotubes by means of a one‐step, one‐pot pressurized oxidation reaction. The obtained GONRs were characterized by different techniques. Furthermore, owing to their unique properties such as strong optical absorption and good water dispersibility, we show that GONRs can be used as an excellent matrix or probe in matrix‐assisted or surface‐enhanced laser desorption/ionization mass spectrometry (MALDI or SELDI MS) for the first time. In MALDI MS, GONRs generated significantly higher signals than conventional organic matrix and other graphene‐based matrices in the detection of low‐mass compounds. We also demonstrate the use of GONRs as a sensitive SELDI probe for simultaneous detection of multiple small molecules and profiling of small molecules in complex environmental samples, thus revealing its application potential in rapid screening of low‐mass pollutants in complex media.  相似文献   

13.
A novel amphiphilic and biodegradable polyelectrolyte DS‐CA is prepared by the esterification of DS with CA. DS‐CA can self‐assemble into stable nanoparticles in water. SOD can effectively associate with DS‐CA at pH = 5.0 by virtue of electrostatic and hydrophobic interactions. SOD release from the complex nanoparticles is slow at pH = 1.2. The release at pH = 7.4 PBS shows an extended behavior and is tunable by changing the weight ratio of SOD to DS‐CA as well as the CA substitution degree. Increasing the CA substitution degree of DS‐CA can significantly enhance the cellular uptake of the loaded SOD. This study demonstrates that the amphiphilic DS‐CA provides a promising strategy for oral delivery of protein/peptide drugs.

  相似文献   


14.
Ab initio calculations at the MP2 level of theory disclose the conceivable existence of neutral complexes containing four or five distinct noble gases (Ng) each bound to a distinct Be‐atom. These multicenter polynuclear Ng molecules are formally obtained by replacing the H‐atoms of CH4 and but‐2‐yne with ? NBeNg moieties, which behave as independent monovalent ‘functional groups’. Our investigated complexes include the five homotetranuclear [C(NBeNg)4] complexes 1 – 5 (Ng=He? Xe), the five heterotetranuclear complexes [CN4Be4(He)(Ne)(Ar)(Kr)] ( 6 ), [CN4Be4(He)(Ne)(Ar)(Xe)] ( 7 ), [CN4Be4(He)(Ne)(Kr)(Xe)] ( 8 ), [CN4Be4(He)(Ar)(Kr)(Xe)] ( 9 ), and [CN4Be4(Ne)(Ar)(Kr)(Xe)] ( 10 ), and the heteropentanuclear complex [HC4N5Be5(He)(Ne)(Ar)(Kr)(Xe)] ( 11 ). We also investigated the five model complexes [H3CNBeNg] (Ng=He? Xe) containing a single ? NBeNg moiety. The geometries and vibrational frequencies of all these species, invariably characterized as minimum‐energy structures, were computed at the MP2(full)/6‐31G(d,p)/SDD level of theory, and their stability with respect to the loss of the various Ng‐atoms was evaluated by single‐point calculations at the MP2(full)/6‐311G(d)/SDD level of theory. The beryllium‐Ng binding energies range from ca. 17 (Ng=He) to ca. 63 (Ng=Xe) kJ/mol, and the results of natural‐bond‐orbital (NBO) and atoms‐in‐molecules (AIM) analysis reveal that the Be? Ng interaction is essentially electrostatic for helium, neon, argon, and krypton, and has probably a small covalent contribution for xenon.  相似文献   

15.
We report a site‐selective cysteine–cyclooctyne conjugation reaction between a seven‐residue peptide tag (DBCO‐tag, Leu‐Cys‐Tyr‐Pro‐Trp‐Val‐Tyr) at the N or C terminus of a peptide or protein and various aza‐dibenzocyclooctyne (DBCO) reagents. Compared to a cysteine peptide control, the DBCO‐tag increases the rate of the thiol–yne reaction 220‐fold, thereby enabling selective conjugation of DBCO‐tag to DBCO‐linked fluorescent probes, affinity tags, and cytotoxic drug molecules. Fusion of DBCO‐tag with the protein of interest enables regioselective cysteine modification on proteins that contain multiple endogenous cysteines; these examples include green fluorescent protein and the antibody trastuzumab. This study demonstrates that short peptide tags can aid in accelerating bond‐forming reactions that are often slow to non‐existent in water.  相似文献   

16.
This work deals with the in‐depth investigation of thiol‐yne based network formation and its effect on thermomechanical properties and impact strength. The results show that the bifunctional alkyne monomer di(but‐1‐yne‐4‐yl)carbonate ( DBC ) provides significantly lower cytotoxicity than the comparable acrylate, 1,4‐butanediol diacrylate ( BDA ). Real‐time near infrared photorheology measurements reveal that gel formation is shifted to higher conversions for DBC /thiol resins leading to lower shrinkage stress and higher overall monomer conversion than BDA . Glass transition temperature (Tg), shrinkage stress, as well as network density determined by double quantum solid state NMR, increase proportionally with the thiol functionality. Most importantly, highly cross‐linked DBC /dipentaerythritol hexa(3‐mercaptopropionate) networks (Tg ≈ 61 °C) provide a 5.3 times higher impact strength than BDA , which is explained by the unique network homogeneity of thiol‐yne photopolymers.

  相似文献   


17.
In this article, a light and pH dual‐sensitive block copolymer PEG‐b‐poly(MPC‐Azo/DEA) was facilely prepared for the first time by azide‐alkyne click chemistry between amphiphilic block copolymer bearing pendant alkynyl group poly(ethylene glycol)‐poly(5‐methyl‐5‐propargylxycarbonyl‐1,3‐dioxane‐2‐one) (PEG‐b‐poly(MPC)) and two azide‐containing compounds azobenzene derivative (Azo‐N3) and 2‐azido‐1‐ethyl‐diethylamine (DEA‐N3). Light response of the polymeric nanoparticles benefits from the azobenzene segments and pH responsiveness is attributed to DEA moieties. The prepared copolymer could self‐assemble into spherical micelle particles. The morphological changes of these particles in response to dual stimuli were investigated by UV/vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Nile Red (NR) was utilized as probe, and fluorescence spectroscopy was served as an evidence for the enhanced release of cargos from polymeric nanoparticles under combined stimulation. Anticancer drug, DOX was loaded into the nanoparticles and the loaded‐DOX could be released from these nanoparticles under dual stimuli. MTT assays further demonstrated that PEG‐b‐poly(MPC) and PEG‐b‐poly(MPC‐Azo/DEA) were of biocompatibility and low toxicity against HepG2 cells as well as SMCC‐7721 cells. More importantly, the prepared DOX‐loaded nanoparticles exhibited good anticancer ability for the two cells. The synthesized light and pH dual‐sensitive biodegradable polymeric nanoparticles were expected to be platforms for precisely controlled release of encapsulated molecules. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1773–1783  相似文献   

18.
Herein, we report a two‐step process forming arene C?O bonds in excellent site‐selectivity at a late‐stage. The C?O bond formation is achieved by selective introduction of a thianthrenium group, which is then converted into C?O bonds using photoredox chemistry. Electron‐rich, ‐poor and ‐neutral arenes as well as complex drug‐like small molecules are successfully transformed into both phenols and various ethers. The sequence differs conceptually from all previous arene oxygenation reactions in that oxygen functionality can be incorporated into complex small molecules at a late stage site‐selectively, which has not been shown via aryl halides.  相似文献   

19.
The last decade has seen a remarkable interest in the development of biocompatible monomers for the realization of patient specific medical devices by means of UV‐based additive manufacturing technologies. This contribution deals with the synthesis and investigation of novel thiol‐yne based monomers with a focus on their biocompatibility and also the mechanical properties in their cured state. It could be successfully shown that propargyl and but‐1‐yne‐4‐yl ether derivatives have a significant lower cytotoxicity than the corresponding (meth)acrylates with similar backbones. Together with appropriate thiol monomers, these compounds show reactivities in the range of (meth)acrylates and almost quantitative triple bond conversions. A particular highlight is the investigation of the network properties of photo cured alkynyl ether/thiol resins by means of low field solid state nuclear magnetic resonance spectroscopy. Additionally, dynamic mechanical analysis of those polymers revealed that monomers containing rigid backbones lead to moduli and glass transition temperatures (Tg's), sufficiently high for the fabrication of medical devices by UV based additive manufacturing methods. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3484–3494  相似文献   

20.
A sensing approach is applied to encode quantitative enzymatic activity information into DNA sequence populations. The method utilizes DNA‐linked peptide substrates as activity probes. Signal detection involves chemical manipulation of a probe population downstream of sample exposure and application of purifying, selective pressure for enzyme products. Selection‐induced changes in DNA abundance indicate sample activity. The detection of protein kinase, protease, and farnesyltransferase activities is demonstrated. The assays were employed to measure enzyme inhibition by small molecules and activity in cell lysates using parallel DNA sequencing or quantitative PCR. This strategy will allow the extensive infrastructure for genetic analysis to be applied to proteomic assays, which has a number of advantages in throughput, sensitivity, and sample multiplexing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号