首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Soft organisms such as earthworms can access confined, narrow spaces, inspiring scientists to fabricate soft robots for in vivo manipulation of cells or tissues and minimally invasive surgery. We report a super-soft and super-elastic magnetic DNA hydrogel-based soft robot (DNA robot), which presents a shape-adaptive property and enables magnetically driven navigational locomotion in confined and unstructured space. The DNA hydrogel is designed with a combinational dynamic and permanent crosslinking network through chain entanglement and DNA hybridization, resulting in shear-thinning and cyclic strain properties. DNA robot completes a series of complex magnetically driven navigational locomotion such as passing through narrow channels and pipes, entering grooves and itinerating in a maze by adapting and recovering its shape. DNA robot successfully works as a vehicle to deliver cells in confined space by virtue of the 3D porous networked structure and great biocompatibility.  相似文献   

2.
Super‐resolution microscopy allows optical imaging below the classical diffraction limit of light with currently up to 20× higher spatial resolution. However, the detection of multiple targets (multiplexing) is still hard to implement and time‐consuming to conduct. Here, we report a straightforward sequential multiplexing approach based on the fast exchange of DNA probes which enables efficient and rapid multiplexed target detection with common super‐resolution techniques such as (d)STORM, STED, and SIM. We assay our approach using DNA origami nanostructures to quantitatively assess labeling, imaging, and washing efficiency. We furthermore demonstrate the applicability of our approach by imaging multiple protein targets in fixed cells.  相似文献   

3.
Soft colloidal particles such as hydrogel microspheres assemble at air/water or oil/water interfaces, where the soft colloids are highly deformed and their surface polymer chains are highly entangled with each other. Herein, we report the formation of robust one‐dimensional, string‐like colloidal assemblies through self‐organization of hydrogel microspheres with shape anisotropy at the air/water interface of sessile droplets. Shape‐anisotropic hydrogel microspheres were synthesized via two‐step polymerization, whereby a hydrogel shell was formed onto preformed rigid microellipsoids. The shape anisotropy of the hydrogel microspheres was confirmed by transmission electron microscopy and high‐speed atomic force microscopy as well as by light‐scattering measurements. The present findings are crucial for the understanding of natural self‐organization phenomena, where “softness” influences microscopic assembled structures such as those of Nostoc bacteria.  相似文献   

4.
Many living organisms have amazing control over their color, shape, and morphology for camouflage, communication, and even reproduction in response to interplay between environmental stimuli. Such interesting phenomena inspire scientists to develop smart soft actuators/robotics via integrating color‐changing functionality based on polymer films or elastomers. However, there has been no significant progress in synergistic color‐changing and shape‐morphing capabilities of life‐like material systems such as hydrogels. Herein, we reported a new class of bioinspired synergistic fluorescence‐color‐switchable polymeric hydrogel actuators based on supramolecular dynamic metal–ligand coordination. Artificial hydrogel apricot flowers and chameleons have been fabricated for the first time, in which simultaneous color‐changing and shape‐morphing behaviors are controlled by the subtle interplay between acidity/alkalinity, metal ions, and temperature. This work has made color‐changeable soft machines accessible and is expected to hold wide potential applications in biomimetic soft robotics, biological sensors, and camouflage.  相似文献   

5.
DNA‐based shape‐memory hydrogels revealing switchable shape recovery in the presence of two orthogonal triggers are described. In one system, a shaped DNA/acrylamide hydrogel is stabilized by duplex nucleic acids and pH‐responsive cytosine‐rich, i‐motif, bridges. Separation of the i‐motif bridges at pH 7.4 transforms the hydrogel into a quasi‐liquid, shapeless state, that includes the duplex bridges as permanent shape‐memory elements. Subjecting the quasi‐liquid state to pH 5.0 or Ag+ ions recovers the hydrogel shape, due to the stabilization of the hydrogel by i‐motif or C‐Ag+‐C bridged i‐motif. The cysteamine‐induced transformation of the duplex/C‐Ag+‐C bridged i‐motif hydrogel into a quasi‐liquid shapeless state results in the recovery of the shaped hydrogel in the presence of H+ or Ag+ ions as triggers. In a second system, a shaped DNA/acrylamide hydrogel is generated by DNA duplexes and bridging Pb2+ or Sr2+ ions‐stabilized G‐quadruplex subunits. Subjecting the shaped hydrogel to the DOTA or KP ligands eliminates the Pb2+ or Sr2+ ions from the respective hydrogels, leading to shapeless, memory‐containing, quasi‐liquid states that restore the original shapes with Pb2+ or Sr2+ ions.  相似文献   

6.
In this study, heparin‐mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb‐like porous structure with well controlled thickness and show long‐term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood‐related complement activation also confirm that the membranes exhibit super‐anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin‐mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

  相似文献   


7.
The synthesis of a shape‐memory acrylamide–DNA hydrogel that includes two internal memories is introduced. The hydrogel is stabilized, at pH 7.0, by two different pH‐responsive oligonucleotide crosslinking units. At pH 10.0, one of the T‐A?T triplex DNA bridging units is dissociated, resulting in the dissociation of the hydrogel into a shapeless quasi‐liquid state that includes the other oligonucleotide bridges as internal memory. Similarly, at pH 5.0, the second type of bridges is separated, through the formation of C‐G?C+ triplex units to yield the shapeless quasi‐liquid state that includes the other oligonucleotide bridges as internal memory. By reversible pH triggering of the hydrogel between the values 10.0?7.0?5.0, the two internal memories cycle the material across shaped hydrogel and shapeless quasi‐liquid states. The two memories enable the pH‐dictated formation of two different hydrogel structures.  相似文献   

8.
The engineering of bioadhesives to bind and conform to the complex contour of tissue surfaces remains a challenge. We have developed a novel moldable nanocomposite hydrogel by combining dopamine‐modified poly(ethylene glycol) and the nanosilicate Laponite, without the use of cytotoxic oxidants. The hydrogel transitioned from a reversibly cross‐linked network formed by dopamine–Laponite interfacial interactions to a covalently cross‐linked network through the slow autoxidation and cross‐linking of catechol moieties. Initially, the hydrogel could be remolded to different shapes, could recover from large strain deformation, and could be injected through a syringe to adhere to the convex contour of a tissue surface. With time, the hydrogel solidified to adopt the new shape and sealed defects on the tissue. This fit‐to‐shape sealant has potential in sealing tissues with non‐flat geometries, such as a sutured anastomosis.  相似文献   

9.
The most pressing challenges for light‐driven hydrogel actuators include reliance on UV light, slow response, poor mechanical properties, and limited functionalities. Now, a supramolecular design strategy is used to address these issues. Key is the use of a benzylimine‐functionalized anthracene group, which red‐shifts the absorption into the visible region and also stabilizes the supramolecular network through π–π interactions. Acid–ether hydrogen bonds are incorporated for energy dissipation under mechanical deformation and maintaining hydrophilicity of the network. This double‐crosslinked supramolecular hydrogel developed via a simple synthesis exhibits a unique combination of high strength, rapid self‐healing, and fast visible‐light‐driven shape morphing both in the wet and dry state. As all of the interactions are dynamic, the design enables the structures to be recycled and reprogrammed into different 3D objects.  相似文献   

10.
In DNA points accumulation in nanoscale topography (DNA‐PAINT), capable of single‐molecule localization microscopy with sub‐10‐nm resolution, the high background stemming from the unbound fluorescent probes in solution limits the imaging speed and throughput. Herein, we reductively cage the fluorescent DNA probes conjugated with a cyanine dye to hydrocyanine, acting as a photoactivatable dark state. The additional dark state from caging lowered the fluorescent background while enabling optically selective activation by total internal reflection (TIR) illumination at 405 nm. These benefits from “reductive caging” helped to increase the localization density or the imaging speed while preserving the image quality. With the aid of high‐density analysis, we could further increase the imaging speed of conventional DNA‐PAINT by two orders of magnitude, making DNA‐PAINT capable of high‐throughput super‐resolution imaging.  相似文献   

11.
Live‐cell labeling, super‐resolution microscopy, single‐molecule applications, protein localization, or chemically induced assembly are emerging approaches, which require specific and very small interaction pairs. The minimal disturbance of protein function is essential to derive unbiased insights into cellular processes. Herein, we define a new class of hexavalent N‐nitrilotriacetic acid (hexaNTA) chelators, displaying the highest affinity and stability of all NTA‐based small interaction pairs described so far. Coupled to bright organic fluorophores with fine‐tuned photophysical properties, the super‐chelator probes were delivered into human cells by chemically gated nanopores. These super‐chelators permit kinetic profiling, multiplexed labeling of His6‐ and His12‐tagged proteins as well as single‐molecule‐based super‐resolution imaging.  相似文献   

12.
Summary: A soft‐lithographic imprinting approach to fabricate super‐hydrophobic surfaces has been developed in this work. In this process, fresh lotus leaves were used as masters and PDMS stamps were prepared by replica molding against the lotus‐leaf surfaces. By using the stamps and an epoxy‐based azo polymer solution as “ink”, the mimicked lotus‐leaf surfaces made of the polymer were fabricated by pressing the featured faces of the stamps against “inked” substrates and drying under a proper condition after peeling off the stamps. The lotus‐leaf‐like surfaces show super‐hydrophobic characteristics with the water contact angle higher than 150° and contact angle hysteresis less than 3°.

SEM images of lotus‐leaf‐like papillary structures on the imprinted surface.  相似文献   


13.
The challenging synthesis of a laterally extended heptazethrene molecule, the super‐heptazethrene derivative SHZ‐CF3 , is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ‐CF3 exhibits an open‐shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo‐terrylene SHZ‐2H was also obtained during the synthesis. This study provides a new synthetic method to access large‐size quinoidal polycyclic hydrocarbons with unique physical properties.  相似文献   

14.
DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw‐puzzle‐like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide‐functionalized AuNPs function as universal joint units for the one‐pot assembly of parent DNA origami of triangular shape to form sub‐microscale super‐origami nanostructures. AuNPs anchored at predefined positions of the super‐origami exhibited strong interparticle plasmonic coupling. This AuNP‐mediated strategy offers new opportunities to drive macroscopic self‐assembly and to fabricate well‐defined nanophotonic materials and devices.  相似文献   

15.
The challenging synthesis of a laterally extended heptazethrene molecule, the super‐heptazethrene derivative SHZ‐CF3 , is reported. This molecule was prepared using a strategy involving a multiple selective intramolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. Compound SHZ‐CF3 exhibits an open‐shell singlet diradical ground state with a much larger diradical character compared with the heptazethrene derivatives. An intermediate dibenzo‐terrylene SHZ‐2H was also obtained during the synthesis. This study provides a new synthetic method to access large‐size quinoidal polycyclic hydrocarbons with unique physical properties.  相似文献   

16.
In recent years, a number of approaches have emerged that enable far‐field fluorescence imaging beyond the diffraction limit of light, namely super‐resolution microscopy. These techniques are beginning to profoundly alter our abilities to look at biological structures and dynamics and are bound to spread into conventional biological laboratories. Nowadays these approaches can be divided into two categories, one based on targeted switching and readout, and the other based on stochastic switching and readout of the fluorescence information. The main prerequisite for a successful implementation of both categories is the ability to prepare the fluorescent emitters in two distinct states, a bright and a dark state. Herein, we provide an overview of recent developments in super‐resolution microscopy techniques and outline the special requirements for the fluorescent probes used. In combination with the advances in understanding the photophysics and photochemistry of single fluorophores, we demonstrate how essentially any single‐molecule compatible fluorophore can be used for super‐resolution microscopy. We present examples for super‐resolution microscopy with standard organic fluorophores, discuss factors that influence resolution and present approaches for calibration samples for super‐resolution microscopes including AFM‐based single‐molecule assembly and DNA origami.  相似文献   

17.
We report a carbonaceous nanobottle (CNB) motor for near infrared (NIR) light‐driven jet propulsion. The bottle structure of the CNB motor is fabricated by soft‐template‐based polymerization. Upon illumination with NIR light, the photothermal effect of the CNB motor carbon shell causes a rapid increase in the temperature of the water inside the nanobottle and thus the ejection of the heated fluid from the open neck, which propels the CNB motor. The occurrence of an explosion, the on/off motion, and the swing behavior of the CNB motor can be modulated by adjusting the NIR light source. Moreover, we simulated the physical field distribution (temperature, fluid velocity, and pressure) of the CNB motor to demonstrate the mechanism of NIR light‐driven jet propulsion. This NIR light‐powered CNB motor exhibits fuel‐free propulsion and control of the swimming velocity by external light and has great potential for future biomedical applications.  相似文献   

18.
The poly‐N‐isopropylacrylamide intelligent hydrogel actuators with high mechanical strength and efficient temperature responses were successfully prepared via molding and three‐dimensional (3D) printing. Addition of nanofibrillated cellulose (NFC) effectively improved the crosslinking density and viscosity of hydrogels, enhancing the mechanical strength and 3D printable property. Based on sufficient polymerization on interface, bilayer hydrogel actuator prepared via molding exhibited efficient bending/unbending deformations. Bending degree in poikilothermy temperature ranging from 25°C to 55°C was higher than that in constant temperature of 55°C. Inspired by the rheology regulation of NFC, 3D printing intelligent hydrogel actuators with NFC content of 10 mg/mL were polymerized efficiently by ultraviolet irradiation. Self‐driven deformation characteristics of 3D printed intelligent hydrogels actuators were regulated via printing parameters including angle, width and length ratio and filling rate of the layered network structure model. The prepared hydrogel material system with molding and 3D printing ability provided material candidates for design and preparation of intelligent soft actuator and robot.  相似文献   

19.
Pathogen detection is growing in importance in the global health arena because of the high morbidity and mortality associated with bacterial blood stream infections. In this work, we present stochastic DNA walkers in droplets (SDwalker‐Drop), a one‐step, rapid, and super‐multiplex method for ultrahigh‐throughput bacterial detection. The SDwalkers, by exploiting cascade signal amplification, endow our analytical platform with fast analysis times and single‐cell analysis ability. The autonomous and multiple‐step walking behavior of the SDwalkers provides a super‐multiplex droplet‐encoding strategy by embedding intensity coded barcodes into a sequence of color‐multiplexed barcodes. We realized a theoretical coding capacity of 83?1=511 and achieved 20 distinct patterns for bacterial phenotype detection and identification. Moreover, our SDwalker‐Drop platform could be readily integrated with a flow cytometer to afford a general approach for super‐multiplexed, high‐throughput biological assays and screening.  相似文献   

20.
A fabrication strategy for biphasic gels is reported, which incorporates high‐internal‐phase emulsions. Closely packed micro‐inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape‐memory performance because of the switchable micro‐ inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self‐healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号