首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In photodynamic therapy (PDT), the level of reactive oxygen species (ROS) produced in the cell directly determines the therapeutic effect. Improvement in ROS concentration can be realized by reducing the glutathione (GSH) level or increasing the amount of photosensitizer. However, excessive amounts photosensitizer may cause side effects. Therefore, the development of photosensitizers that reduce GSH levels through synergistically improving ROS concentration in order to strengthen the efficacy of PDT for tumor is important. We report a nano‐metal–organic framework (CuII‐metalated nano‐MOF {CuL‐[AlOH]2}n (MOF‐2, H6L=mesotetrakis(4‐carboxylphenyl)porphyrin)) based on CuII as the active center for PDT. This MOF‐2 is readily taken up by breast cancer cells, and high levels of ROS are generated under light irradiation. Meanwhile, intracellular GSH is considerably decreased owing to absorption on MOF‐2; this synergistically increases ROS concentration and accelerates apoptosis, thereby enhancing the effect of PDT. Notably, based on the direct adsorption of GSH, MOF‐2 showed a comparable effect with the commercial antitumor drug camptothecin in a mouse breast cancer model. This work provides strong evidence for MOF‐2 as a promising new PDT candidate and anticancer drug.  相似文献   

2.
Currently, photosensitizers (PSs) that are microenvironment responsive and hypoxia active are scarcely available and urgently desired for antitumor photodynamic therapy (PDT). Presented herein is the design of a redox stimuli activatable metal‐free photosensitizer (aPS), also functioning as a pre‐photosensitizer as it is converted to a PS by the mutual presence of glutathione (GSH) and hydrogen peroxide (H2O2) with high specificity on a basis of domino reactions on the benzothiadiazole ring. Superior to traditional PSs, the activated aPS contributed to efficient generation of reactive oxygen species including singlet oxygen and superoxide ion through both type 1 and type 2 pathways, alleviating the aerobic requirement for PDT. Equipped with a triphenylphosphine ligand for mitochondria targeting, mito aPS showed excellent phototoxicity to tumor cells with low light fluence under both normoxic and hypoxic conditions, after activation by intracellular GSH and H2O2. The mito aPS was also compatible to near infrared PDT with two photon excitation (800 nm) for extensive bioapplications.  相似文献   

3.
The reaction of [(Me2S)AuCl] with an equimolar amount of benzyl isocyanide (PhCH2NC) ligand led to the formation of complex [(PhCH2NC)AuCl] ( 1 ). The solid‐state structure of 1 was determined using the X‐ray diffraction method. Through a salt metathesis reaction, the chloride ligand in 1 was replaced by pyrimidine‐2‐thiolate (SpyN?) to afford the complex [(PhCH2NC)Au(η1‐S‐Spy)] ( 2 ), which was characterized spectroscopically. The cytotoxic activities of 1 and 2 were evaluated against three human cancer cell lines: ovarian carcinoma (SKOV3), lung carcinoma (A549) and breast carcinoma (MCF‐7). Complex 2 showed higher cytotoxicity than cisplatin against SKOV3 and MCF‐7 cancer cell lines. It showed a strong anti‐proliferative activity with IC50 of 7.80, 6.26 and 6.14 μM, compared with that measured for cisplatin which was 7.62, 12.36 and 11.47 μM, against A549, SKOV3 and MCF‐7 cell lines, respectively. The induction of cellular apoptosis by 2 was also studied on MCF‐7 cell line. Our results indicated that 2 could induce apoptosis in cancerous cells in a dose‐dependent manner.  相似文献   

4.
Graphitic carbon nitride (g‐C3N4) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu2+ and g‐C3N4 nanosheets (Cu2+–g‐C3N4) led to enhanced light‐triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox‐active species Cu+–g‐C3N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.  相似文献   

5.
In order to take the advantages of the anticancer properties of benzimidazoles and hydrazones, we synthesized new 4‐(5‐chloro‐1H‐benzimidazol‐2‐yl)‐benzoic acid benzylidene hydrazide derivatives ( 3a–3t ) and evaluated their anticancer activity against A549 (human lung adenocarcinoma) and MCF‐7 (human breast adenocarcinoma) cells. The structures of the compounds ( 3a–3t ) were confirmed by IR, 1H‐NMR, 13C‐NMR, mass spectroscopy, and elemental analyses. Antiproliferative activities of the compounds were evaluated using MTT assay, BrdU method, and flow cytometric analysis. In addition, with purpose of determining selectivity the cytotoxic activities of the final compounds were screened against healthy NIH3T3 cell line (mouse vembryonic fibroblast cells). Among the tested compounds 3e and 3f showed significant cytotoxic activity against A549 and MCF‐7 cancer cells with an IC50 value of 0.0316 μM. Furthermore, compound 3p showed remarkable cytotoxic activity against MCF‐7 comparing with standard drug cisplatin. Annexin V‐FITC assay also suggested that this compounds induced cell death by apoptosis.  相似文献   

6.
A novel tetranuclear copper complex (TCC) has been successfully synthesized and characterized using high resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FTIR) and X-ray single crystal diffraction technique. TCC was capable of triggering by Glutathione (GSH) to produce Cu (Ⅰ), then the resulted Cu (Ⅰ) further converted the overexpression of endogenous H2O2 into •OH, a highly cytotoxic reactive oxygen species (ROS), thereby killing the cancer cells. TCC showed high cytotoxicity to 4T1, MCF7, HepG2 cancer cells. Interestingly, the cytotoxicity of TCC to non-cancerous cells is much lower than that of cancer cells. Cell cycle experiments demonstrated that TCC was capable of arresting the cancer cell cycle in the G2/M phase. The apoptosis experiments shown that TCC could induce apoptosis rather than necrosis.  相似文献   

7.
The kinetics and mechanisms of the copper(II)‐catalyzed GSH (glutathione) oxidation are examined in the light of its biological importance and in the use of blood and/or saliva samples for GSH monitoring. The rates of the free thiol consumption were measured spectrophotometrically by reaction with DTNB (5,5′‐dithiobis‐(2‐nitrobenzoic acid)), showing that GSH is not auto‐oxidized by oxygen in the absence of a catalyst. In the presence of Cu2+, reactions with two timescales were observed. The first step (short timescale) involves the fast formation of a copper–glutathione complex by the cysteine thiol. The second step (longer timescale) is the overall oxidation of GSH to GSSG (glutathione disulfide) catalyzed by copper(II). When the initial concentrations of GSH are at least threefold in excess of Cu2+, the rate law is deduced to be ?d[thiol]/dt=k[copper–glutathione complex][O2]0.5[H2O2]?0.5. The 0.5th reaction order with respect to O2 reveals a pre‐equilibrium prior to the rate‐determining step of the GSSG formation. In contrast to [Cu2+] and [O2], the rate of the reactions decreases with increasing concentrations of GSH. This inverse relationship is proposed to be a result of the competing formation of an inactive form of the copper–glutathione complex (binding to glutamic and/or glycine moieties).  相似文献   

8.
The glutathione (GSH) redox reaction is critical for defense against cellular reactive oxygen species (ROS). However, direct and real‐time monitoring of this reaction in living mammalian cells has been hindered by the lack of a facile method. Herein, we describe a new approach that exploits the GSH biosynthetic pathway and heteronuclear NMR. [U‐13C]‐labeled cysteine was incorporated into GSH in U87 glioblastoma cells, and the oxidation of GSH to GSSG by a ROS‐producing agent could be monitored in living cells. Further application of the approach to cells resistant to temozolomide (TMZ), an anti‐glioblastoma drug, suggested a possible new resistance mechanism involving neutralization of ROS. This result was corroborated by the observation of up‐regulation of glutathione peroxidase 3 (GPx3). This new approach could be easily applied to redox‐dependent signaling pathways and drug resistance involving ROS.  相似文献   

9.
Copper complexes are of medicinal and biological interest, including as anticancer drugs designed to cleave intracellular biomolecules by O2 activation. To exhibit such activity, the copper complex must be redox active and resistant to dissociation. Metallothioneins (MTs) and glutathione (GSH) are abundant in the cytosol and nucleus. Because they are thiol‐rich reducing molecules with high CuI affinity, they are potential competitors for a copper ion bound in a copper drug. Herein, we report the investigation of a panel of CuI/CuII complexes often used as drugs, with diverse coordination chemistries and redox potentials. We evaluated their catalytic activity in ascorbate oxidation based on redox cycling between CuI and CuII, as well as their resistance to dissociation or inactivation under cytosolically relevant concentrations of GSH and MT. O2‐activating CuI/CuII complexes for cytosolic/nuclear targets are generally not stable against the GSH/MT system, which creates a challenge for their future design.  相似文献   

10.
UV‐induced toxicity is characterized by marked oxidative stress, accompanied by the depletion of key cellular antioxidants, particularly glutathione (GSH). Replenishing cellular GSH may represent a means of counteracting UV‐induced toxicity: however, treatment with free GSH is not therapeutically effective due to its unfavorable pharmacokinetic properties. In this study, we show that S‐acyl‐glutathione (acyl‐SG) derivatives, which consist of an acyl chain (of variable length and saturation) linked via a thioester bond to GSH, increase intracellular levels of reduced GSH in primary skin fibroblasts, adenocarcinoma HeLa and neuroblastoma SH‐SY5Y cells. Consistent with this, acyl‐SG derivatives protect against UV‐induced reactive oxygen species (ROS) production and UV‐B/C‐mediated lipid peroxidation and caspase‐3 activation in the analyzed cell lines, with unsaturated thioesters displaying a significantly greater protective effect. Taken together, our findings suggest that acyl‐SG thioesters may be therapeutically effective in the treatment of UV‐related skin disorders and oxidative stress‐mediated conditions in general.  相似文献   

11.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

12.
Amphiphilic hyperbranched polyprodrugs (DOX‐S‐S‐PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self‐delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3′‐dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino‐terminated polyethylene glycol monomethyl ether (mPEG‐NH2) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)‐responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL?1) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK‐8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX‐S‐S‐PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self‐delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one‐pot synthesis; 2) completely without toxic or non‐degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self‐delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self‐delivery systems for potential high efficient cancer therapy.  相似文献   

13.
Azocarboxamide (azcH) has been combined for the first time with [Ru–Cym] to generate metal complexes with N,N‐ and N,O‐coordination mode, [(Cym)Ru(azc)Cl] and [(Cym)Ru(azcH)Cl]+[PF6]?. Geometric and electronic structures of the complexes are reported along with their in vitro activities against different tumour cell lines and preliminary results on solution chemistry. Compound [(Cym)Ru(azc)Cl] exhibited remarkable cytotoxic properties. It was cell‐type specific and had comparable IC50 values towards both cancer cells and their drug‐resistant subline. A tenfold increase in the sensitivity towards [(Cym)Ru(azc)Cl] was noted for the tumour cells with depleted intracellular glutathione (GSH) level, suggesting the essential role of GSH in cell response to this compound.  相似文献   

14.
Chemodynamic therapy (CDT) utilizes iron‐initiated Fenton chemistry to destroy tumor cells by converting endogenous H2O2 into the highly toxic hydroxyl radical (.OH). There is a paucity of Fenton‐like metal‐based CDT agents. Intracellular glutathione (GSH) with .OH scavenging ability greatly reduces CDT efficacy. A self‐reinforcing CDT nanoagent based on MnO2 is reported that has both Fenton‐like Mn2+ delivery and GSH depletion properties. In the presence of HCO3?, which is abundant in the physiological medium, Mn2+ exerts Fenton‐like activity to generate .OH from H2O2. Upon uptake of MnO2‐coated mesoporous silica nanoparticles (MS@MnO2 NPs) by cancer cells, the MnO2 shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn2+, resulting in GSH depletion‐enhanced CDT. This, together with the GSH‐activated MRI contrast effect and dissociation of MnO2, allows MS@MnO2 NPs to achieve MRI‐monitored chemo–chemodynamic combination therapy.  相似文献   

15.
The family of iodido OsII arene phenylazopyridine complexes [Os(η6‐p‐cym)(5‐R1‐pyridylazo‐4‐R2‐phenyl))I]+ (where p‐cym=para‐cymene) exhibit potent sub‐micromolar antiproliferative activity towards human cancer cells and are active in vivo. Their chemical behavior is distinct from that of cisplatin: they do not readily hydrolyze, nor bind to DNA bases. We report here a mechanism by which they are activated in cancer cells, involving release of the I ligand in the presence of glutathione (GSH). The X‐ray crystal structures of two active complexes are reported, 1 ‐I (R1=OEt, R2=H) and 2 ‐I (R1=H, R2=NMe2). They were labelled with the radionuclide 131I (β/γ emitter, t1/2 8.02 d), and their activity in MCF‐7 human breast cancer cells was studied. 1 ‐[131I] and 2 ‐[131I] exhibit good stability in both phosphate‐buffered saline and blood serum. In contrast, once taken up by MCF‐7 cells, the iodide ligand is rapidly pumped out. Intriguingly, GSH catalyzes their hydrolysis. The resulting hydroxido complexes can form thiolato and sulfenato adducts with GSH, and react with H2O2 generating hydroxyl radicals. These findings shed new light on the mechanism of action of these organo‐osmium complexes.  相似文献   

16.
The compounds [(η6p‐cymene)RuCl2(4‐nitroaniline)] and [(η6p‐cymene)RuCl2(2‐halogen‐4‐nitroaniline)] were synthesized and characterized by various means. The [(η6p‐cymene)RuCl2(4‐nitroaniline)] and [(η6p‐cymene)RuCl2(2‐fluoro‐4‐nitroaniline)] compounds were determined by X‐ray diffraction, appearing in a distorted piano‐stool type of arrangement with similar bond lengths and angles around the ruthenium. The compounds exhibited moderate to strong in vitro cytotoxicity against A549 and MCF‐7 human cancer cells. Substitution of heavy halogen atom on the ortho position of para‐nitroaniline weakened the cytotoxicity against both of MCF‐7 and A549, except the cases of fluorine substitution for hydrogen atom regarding A549 and bromine substitution for chlorine atom regarding MCF‐7, which showed minor deviation.  相似文献   

17.
A series of histidine derived Au(I) bis‐NHC complexes bearing different ester, amide and carboxylic acid functionalities as well as wingtip substituents is synthesized and characterized. The stability in aqueous media, in vitro cytotoxicity in a set of cancer cell lines (MCF7, PC3 and A2780/A2780cisR) along with the cellular uptake are evaluated. Stability tests suggest hydrolysis of the ester within 8 h, which might lead to deactivation. Furthermore, the bis‐NHC system shows a sufficient stability against cysteine and the thiol containing peptide GSH. The benzyl ester and amide show the highest activity comparable to the benchmark compound cisplatin, with the ester only displaying a slightly lower cytotoxicity than the amide. A cellular uptake study revealed that the benzyl ester and the amide could have different intracellular distribution profiles but both complexes induce perturbations of the cellular physiological processes. The simple modifiability and high stability of the complexes provides a promising system for upcoming post modifications to enable targeted cancer therapy.  相似文献   

18.
Herein, we report the synthesis of biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles (NPs) for simultaneous fluorescence‐surface‐enhanced Raman scattering (F‐SERS) bimodal imaging and drug delivery. Stable Raman signals were created by typical SERS tags that were composed of Ag NPs for optical enhancement, a reporter molecule of 4‐mercaptopyridine (4‐Mpy) for a spectroscopic signature, and a silica shell for protection. A further coating of mesoporous titania (mTiO2) on the SERS tags offered high loading capacity for a fluorescence dye (flavin mononucleotide) and an anti‐cancer drug (doxorubicin (DOX)), thereby endowing the material with fluorescence‐imaging and therapeutic functions. The as‐prepared F‐SERS dots exhibited strong fluorescence when excited by light at 460 nm whilst a stable, characteristic 4‐Mpy SERS signal was detected when the excitation wavelength was changed to longer wavelength (632.8 nm), both in solution and after incorporation inside living cells. Their excellent biocompatibility was demonstrated by low cytotoxicity against MCF‐7 cells, even at a high concentration of 100 μg mL?1. In vitro cell cytotoxicity confirmed that DOX‐loaded F‐SERS dots had a comparable or even greater therapeutic effect compared with the free drug, owing to the increased cell‐uptake, which was attributed to the possible endocytosis mechanism of the NPs. To the best of our knowledge, this is the first proof‐of‐concept investigation on a multifunctional nanomedicine that possessed a combined capacity for fast and multiplexed F‐SERS labeling as well as drug‐loading for cancer therapy.  相似文献   

19.
《Electroanalysis》2003,15(20):1632-1638
The glutathione (GSH) self‐assembled monolayer and its compexlation with Cu2+ were studied by using voltammetry and EQCM. It was found that the monolayer could rearrange during the redox process of Cu2+/Cu+. The protonating, or not, of the carboxyl terminates of the adsorpted GSH molecules influence the compexlation interaction significantly for they are the key binding sites. The GSH monolayer had the capacity to accumulate Cu2+ and the monolayer modified gold electrode was employed to detect the low levels of Cu2+ with a limit of 1.0×10?10 mol L?1.  相似文献   

20.
Nine formyl‐phloroglucinolmeroterpenoids (FPMs), namely, eucalrobusones A–I ( 1 – 9 ), were isolated from the leaves of Eucalyptus robusta by tracking the phenolic hydroxyl 1H NMR peaks. The Snatzke helicity rules for the Cotton effects of twisted benzene rings were applied to elucidate the absolute configurations of the FPMs. These findings, along with NMR spectroscopy, the circular dichroism (CD) exciton chirality method, and CD calculations, allowed complete structures for the FPMs to be assigned. Eucalrobusones A–F ( 1 – 6 ) are novel adducts formed between a formyl‐derived carbon atom on the phloroglucinol ring and monoterpene and sesquiterpene components. Eucalrobusones G–I ( 7 – 9 ) are the first examples of FPMs with cubebane part structures connected by an unusual 1‐oxaspiro[5.5]undecane subunit. Among these isolates, eucalrobusone C ( 3 ) showed significant cytotoxicity against HepG2, MCF‐7, and U2OS cancer cell lines, with IC50 values less than 10 μm . Compound 3 significantly blocks cell proliferation in MCF‐7 cells and induces MCF‐7 cell death through apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号