首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This report describes the use of a piezoelectric quartz crystal (PQC) sensor to investigate the nonspecific adsorption of fibrinogen (FN) and sodium dodecyl sulfate (SDS) onto a self-assembled monolayer (SAM) of alkanethiols on gold. The change in adsorption mass was monitored in situ by the PQC sensor. A kinetics model was proposed to describe the adsorption of the FN and SDS on the hydrophobic SAM surface. The adsorption kinetics parameters were determined from the responses of the PQC. The adsorption and desorption rate constants of the FN on the SAM surface were estimated to be (6.18 ± 0.53) × 103 M−1 s−1 and (6.74 ± 0.72) × 10−3 s−1, respectively. The rate constants for the adsorption and desorption of SDS on the SAM are (24.3 ± 1.4 M−1 s−1) and (1.52 ± 0.11) × 10−2 s−1, respectively. The adsorption of SDS on the SAM was reversible. The fractional coverage of the FN on the SAM surface was estimated from kinetics analyses to be 42–86% for the FN concentration range 25–400 μg/ml. Over 80% of the FN is irreversibly adsorbed on the SAM surface with respect to dilution of the bulk phase. The fraction of FN reversibly adsorbed increases with the bulk concentration of FN.  相似文献   

2.
The mediated oxidation of N-acetyl cysteine (NAC) and glutathione (GL) at the palladized aluminum electrode modified by Prussian blue film (PB/Pd–Al) is described. The catalytic activity of PB/Pd–Al was explored in terms of FeIII[FeIII(CN)6]/FeIII[FeII(CN)6]1− system by taking advantage of the metallic palladium layer inserted between PB film and Al, as an electron-transfer bridge. The best mediated oxidation of NAC and GL on the PB/Pd–Al electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 2. The mechanism and kinetics of the catalytic oxidation reactions of the both compounds were monitored by cyclic voltammetry and chronoamperometry. The charge transfer-rate limiting step as well as overall oxidation reaction of NAC or GL is found to be a one-electron abstraction. The values of transfer coefficients α, catalytic rate constant k and diffusion coefficient D are 0.5, 3.2 × 102 M−1 s−1 and 2.45 × 10−5 cm2 s−1 for NAC and 0.5, 2.1 × 102 M−1 s−1 and 3.7 × 10−5 cm2 s−1 for GL, respectively. The modifying layers on the Pd–Al substrate have reproducible behavior and a high level of stability in the electrolyte solutions. The modified electrode is exploited for hydrodynamic amperometry of NAC and GL. The amperometric calibration graph is linear in concentration ranges 2 × 10−6–40 × 10−6 for NAC and 5 × 10−7–18 × 10−6 M for GL and the detection limits are 5.4 × 10−7 and 4.6 × 10−7 M, respectively.  相似文献   

3.
Semiautomatic methods are described for the catalytic titrimetric determination of microamounts of silver and mercury(II) using a chloramine-T-selective electrode as monitor. The methods are based on the inhibitory effect of Ag(I) and Hg(II) on the iodide-catalyzed chloramine-T-arsenite and chloramine-T-H2O2 reactions. Microamounts of silver in the range 0.2–200 μg (1 × 10−7−1 × 10−4 M) and of mercury(II) in the range 0.1–200 μg (2.5 × 10−8−5 × 10−5 M) were determined using the chloramine-T-As(III) indicator reaction. Mercury(II) in the range 4–2000 μg (1 × 10−6−5 × 10−4 M) was also determined using the chloramine-T-H2O2 indicator reaction. The accuracy and precision were in the range 0.1–1%.  相似文献   

4.
Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of 3×108 M−1 s−1 in the ionic liquid C4mpyrr NTf2 and 2.8×107 M−1 s−1 in water. This reactivity indicates that BOB ILs may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively “cold” fissile actinides.  相似文献   

5.
The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in polyvinyl alcohol (PVA)–room temperature ionic liquid (i.e., 1-octyl-3-methylimidazolium hexafluorophosphate [OMIM]PF6) composition has been investigated by using cyclic voltammetry and chronocoulometry. It is found that the composition can promote the direct electron transfer of Hb and the heterogeneous electron transfer rate constant (ks) of immobilized Hb is enhanced to 19.9 s−1. The immobilized Hb also shows high electro-catalytic activity towards the redox of oxygen, hydrogen peroxide and nitrite. The Michaelis constants (Km) decrease to 1.2 × 10−4 M (for hydrogen peroxide) and 9.4 × 10−3 M (for nitrite). The surface concentration of electroactive Hb is estimated and it is ca. 1.4 × 10−10 mol cm−2, meaning that several layers of immobilized Hb take part in the electrochemical reaction. When gold nanoparticles (GNP) is introduced into the composition, the resulting PVA–GNP–[OMIM]PF6 composition presents better performance. The electrochemical characteristic of immobilized Hb is improved further. Thus PVA–GNP–[OMIM]PF6 composition is more suitable for the immobilization of Hb. Therefore, it is a good strategy to prepare novel composition for protein immobilization by using several materials with different function.  相似文献   

6.
The spectra and kinetic behavior of solvated electrons (esol) in alkyl ammonium ionic liquids (ILs), i.e. N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMMA-BF4), N,N,N-trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI), N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13-TFSI), and N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P14-TFSI) were investigated by the pulse radiolysis method. The esol in each of the ammonium ILs has an absorption peak at 1100 nm, with molar absorption coefficients of 1.5–2.3×104 dm3 mol−1 cm−1. The esol decayed by first order with a rate constant of 1.4–6.4×106 s−1. The reaction rate constant of the solvated electron with pyrene (Py) was 1.5–3.5×108 dm3 mol−1 s−1 in the various ILs. These values were about one order of magnitude higher than the diffusion-controlled limits calculated from measured viscosities. The radiolytic yields (G-value) of the esol were 0.8–1.7×10−7 mol J−1. The formation rate constant of esol in DEMMA-TFSI was 3.9×1010 s−1. The dry electron (edry) in DEMMA-TFSI reacts with Py with a rate constant of 7.9×1011 dm3 mol−1 s−1, three orders of magnitude higher than that of the esol reactions. The G-value of the esol in the picosecond time region is 1.2×10−7 mol J−1. The capture of edry by scavengers was found to be very fast in ILs.  相似文献   

7.
A detailed study of the electrochemical reduction of diacetylbenzene A in aqueous medium between Ho = −5 and pH 14 is presented. The reactants are strongly adsorbed, so that the reactions are of a surface nature. From Ho = −5 to pH 6, a global 2e reduction yielding an enediol-type intermediate occurs. Analysis using the theory of the square schemes with protonations at equilibrium shows that, up to pH 4, the reaction is controlled by the first electron uptake, the paths being successively H+e and eH+. The elementary electrochemical surface rate constants are 9.6 × 107 s and 1.2 × 106 s for AH+ and A respectively. From pH 6 to 14, a le adsorption wave, corresponding to the formation of (a) monoradical(s), appears and is followed by a le wave due to the reduction of the radical(s). A dimerization occurs, due to the coupling A + AH, as in the case of the monocarbonyl compounds. The rate of this surface process, kd = 5 × 1013 cm2 mol−1 s−1, is markedly smaller than the rate of the homogeneous reaction obtained in alkaline ethanol by Savéant et al. for the coupling of the radicals of benzaldehyde, benzophenone and acetophenone.  相似文献   

8.
We compared the binding affinity of 6-propyl-2-thiouracil (PTU) with native and destabilized human serum albumin (HSA) as a model to assess the binding ability of albumin in patients suffering from chronic liver or renal diseases. Urea (U) and guanidine hydrochloride (Gu·HCl) at a concentration of 3.0 M were used as denaturation agents.Increasing the concentration of PTU from 0.8 × 10−5 to 1.20 × 10−4 M in the systems with HSA causes a decrease in fluorescence intensity of the protein excited with both 280 and 295 nm wavelengths. The results indicate that urea and Gu·HCl bind to the carbonyl group and then to the NH-group. To determine binding constants we used the Scatchard plots. The presence of two classes of HSA–PTU binding sites was observed. The binding constants (Kb) are equal to 1.99 × 104 M−1 and 1.50 × 104 M−1 at λex = 280 nm, 5.20 × 104 M−1 and 1.65 × 104 M−1 at λex = 295 nm. At λex = 280 nm the number of drug molecules per protein molecule is aI = 1.45 and aII = 1.32 for I and II binding sites, respectively. At λex = 295 nm they are aI = 0.63 and aII = 1.54 for the I and II binding sites.The estimation of the binding ability of changed albumin in the uremic and diabetic patients suffering from chronic liver or renal diseases is very important for safety and effective therapy.  相似文献   

9.
The voltammetric responses observed for carbohydrates and polyalcohols at 0.60 V in 0.10 M NaOH are significantly larger at preanodized CuMn (95:5) electrodes as compared to preanodized pure Cu electrodes. Apparent values for the number of electrons transferred (napp) and the corresponding values of heterogeneous rate constants (kapp) are estimated for selected reactants from the slopes and intercepts, respectively, of Koutecký–Levich plots of background-corrected voltammetric currents obtained at CuMn and Cu rotated disk electrodes (RDEs). Values of napp (and kapp) for sorbitol and glucose are 11.8 (9.2×10−3 cm s−1) and 11.7 (8.0×10−3 cm s−1), respectively, at a CuMn RDE. These are compared to the values 10.4 (1.8×10−3 cm s−1) and 9.6 (2.0×10−3 cm s−1) for sorbitol and glucose, respectively, at a Cu RDE. The larger sensitivities observed at the CuMn RDE in comparison to the Cu RDE are concluded to be the beneficial result of larger kapp values at the alloy electrode. Furthermore, the larger kapp values are speculated to result from enhanced preadsorption of the reactant species at Mn(IV) sites in the preanodized CuMn surface. In flow-injection measurements, the peak signals obtained for successive injections of glucose using a CuMn electrode (0.60 V vs. SCE) were quite stable with a standard deviation of 1.5%. However, large day-to-day variations (±15%) observed in the average peak signals are attributed to the temperature sensitivities of the kapp value and the diffusion coefficient for glucose.  相似文献   

10.
New 3,4:9,10-dibenzo-2,11-dihydroxy-1,12-bispiperazine-5,8-dioxododecane complexes [C24H36N4O6Cu] (1), [C24H32N4O4Zn] (2) have been synthesized and characterized by elemental analysis, IR, NMR, Mass, EPR, UV–vis spectroscopy and molar conductance measurements. The complexes are non-ionic in nature and possess octahedral geometry around Cu2+, Zn2+ central metal ions. The binding studies of 1 and 2 with calf thymus DNA (CT-DNA) were investigated by UV–vis, fluorescence, cyclic voltammetery and viscosity measurements. The calculated binding constant Kb for 1 and 2 obtained from UV–vis absorption studies was 7.6 × 103 M−1, 80.8 × 104 M−1, respectively. The intrinsic binding constants were also estimated to be 7.0 × 104 M−1 and 7.53 × 105 M−1 for 1 and 2, respectively by using emission titrations. These experimental results suggest that complexes are groove binders and interact to CT-DNA with different affinities. Both the complexes in presence and absence of CT-DNA show quasireversible wave corresponding to CuII/CuI and ZnII/ZnI redox couple. The changes in E1/2, ΔE, Ipa/Ipc ascertain the interaction of 1 and 2 with CT-DNA. Further, decrease in viscosity of CT-DNA with increasing concentration of complexes was observed. In vitro, antimicrobial activity against fungi A. brassicicola, A. niger and bacteria E. coli, P. aeruginosa of complexes were carried out, which indicate that complex 2 is more active against both fungal and bacterial strains as shown by % inhibition data.  相似文献   

11.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

12.
The direct electrochemical reduction of hemin, protoporphyrin(IX) iron(III) chloride, ligated with strong or weak heterocyclic bases, was investigated in the ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]), using cyclic voltammetry and chronocoulometry. Hemin complexed with N-methylimidazole (NMI) or with pyridine had E1/2 values slightly (4–59 mV) more positive in IL (without electrolyte) than in methanol (1.0 M electrolyte) using a gold electrode. NMI-ligated hemin had a lower E1/2 than pyridine-ligated hemin in either IL, consistent with the stronger electron donor characteristic of NMI. [Bmim][PF6] solutions consistently yielded E1/2 values 30 mV more negative than [omim][PF6] solutions. The diffusion coefficients Do of hemin in the IL ranged between 1.50 and 2.80×10−7 cm2 s−1, while the heterogeneous electron-transfer rate constants ks ranged between 3.7 and 14.3×10−3 cm s−1. Cyclic voltammetry of hemin adsorbed to a gold surface through 4,4′-bispyridyl disulfide (AT4) linkages showed a large positive shift in the oxidation wave, indicating that adsorption stabilizes the reduced hemin state. The surface concentration Γo of the adsorbed hemin was determined to be 1.21×10−10 mol cm−2, indicating the presence of one or more complete monolayers of hemin. These findings suggest that while hemin is electrochemically active in IL, its behavior is modified by the ligand field strength and surface adsorption phenomena.  相似文献   

13.
Two histidine-containing natural dipeptides, carnosine and anserine (β-alanyl-1-methyl-l-histidine), have been examined for their antioxidant and radioprotective abilities. Pulse radiolysis studies indicated the antioxidative properties of carnosine and anserine aqueous solutions at different pH. The rate constants for the reaction OH radical with carnosine at neutral pH were determined to be 5.3×109 M−1 s−1 at 300 nm, and 4.1×109 M−1 s−1 at 400 nm, respectively. Carnosine and anserine also protected plasmid pUC18 DNA from X-ray radiation-induced strand breaks as evidenced from the studies by agarose gel electrophoresis. Carnosine showed higher protective efficiency under the experimental conditions. Our data demonstrated that carnosine and anserine may play an important role in the maintenance of the antioxidant system.  相似文献   

14.
The spectral features of the squarylium near-infrared (NIR) dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is λ=663 nm in methanol. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission wavelength of the dye in methanol is λem=670 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The Stern–Volmer quenching constant, KSV, was calculated from the Stern–Volmer plot to be KSV=2.70×107 M−1 for Co(II) ion. The KSV value for Fe(III) ion could not be established due to the non-linearity of the Stern–Volmer plot and the modified Stern–Volmer plot for this ion. The detection limit is 6.24×10−8 M for Fe(III) ion and 1.55×10−5 M for Co(III) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant, KS, of the metal–dye complex was calculated to be 3.14×106 M−1 for the Fe–dye complex and 2.64×105 M−1 for the Co–dye complex.  相似文献   

15.
The observation that dipyridamole inhibits lipoxygenase has been confirmed and extended to soybean lipoxygenase using a luminol endpoint. The ID50 (50% inhibitory concentration) was 3.3 × 10−7 M. Dipyridamole inhibits luminol-dependent Chemiluminescence of human myeloperoxidase (ID50 = 9 × 10−7 M). Dipyridamole inhibits luminol-dependent Chemiluminescence from human neutrophils.  相似文献   

16.
Four short- and long-alkyl-multiamine ligands L1–L4 have been synthesized and characterized. The catalytic efficiency of complex CuL1 and functional metallomicelles CuL2–CuL4 were comparatively investigated for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) in buffered solution at 30 °C. The ternary kinetic model for metallomicellar catalysis was suggested to analyze the experimental data. The kinetic and thermodynamic parameters kN, KT and pKa were obtained. The results indicated that the complexes with 1:1 ratio of ligands L2–L4 to copper(II) ion were the kinetic active catalysts, and the deprotonized Cu(II) complex formed by activated water molecule was the real active species for BNPP catalytic hydrolysis. The real rate constant of the reaction catalyzed by CuL1–CuL4 was 4.00 × 10−6, 7.44 × 10−5, 1.42 × 10−4 and 4.10 × 10−4 s−1, respectively. The effects of ligand and microenvironment on the hydrolytic reaction of BNPP have been discussed in detail.  相似文献   

17.
The hydrogen abstraction reaction of 1,1,1,2-tetrafluoroethane (HFC-134a) by chlorine radical is investigated by theoretical calculations. Equilibrium geometries and harmonic vibrational frequencies of the reactants, transition state, and products are calculated using high-level ab initio methods. Rate constants of forward and backward reactions for the temperatures from 200 to 1000 K are calculated using classical transition state theory with Eckart tunneling correction, fitted in the expressions kf (T) = 1.19 × 10−23T3.93exp (−1110/T), and kb (T) = 8.86 × 10−24T3.32exp (−959/T) cm3 molecule−1 s−1 for forward and backward reactions, respectively, and are in reasonable agreement with the available experimental values.  相似文献   

18.
The radical pair dynamics in a photochemical hydrogen abstraction reaction of 2-methyl-1,4-naphthoquinone in a sodium dodecylsulfate micelle was modulated by a microwave pulse. After a short resonant 180° microwave pulse, the recombination of the radical pair was enhanced, its rate constant being determined to be (8.3±0.8)×106 s−1. Other kinetic parameters were determined by the scanning of the microwave pulse position as follows: the formation of the radical pair (3.3±0.3)×107 s−1, the relaxation rate from the triplet (T±1) levels to the singlet–triplet (T0) mixed one (3.3±0.3)×105 s−1 at 331 mT, and the radical escape rate (5.8±0.6)×105 s−1.  相似文献   

19.
Degradation of polyoxyethylene chain of non-ionic surfactant (TritonX-100) by chromium(VI) has been studied spectrophotometrically under different experimental conditions. The reaction rate bears a first-order dependence on the [Cr(VI)] under pseudo-first-order conditions, [TritonX-100]  [Cr(VI)] in presence of 1.16 mol dm−3 perchloric acid. The observed rate constant (kobs) was 3.3 × 10−4 to 3.5 × 10−4 s−1 and the half-life (t1/2) was 33–35 min for chromium(VI). The effects of total [TritonX-100] and [H+] on the reaction rate were determined. Reducing nature of non-ionic TritonX-100 surfactant is found to be due to the presence of –OH group in the polyoxyethylene chain. It was observed that monomeric and non-ionic micelles of TritonX-100 were oxidized by chromium(VI). When [TritonX-100] was less than its critical micelle concentration (cmc) the kobs values increased from 0.76 × 10−4 to 1.5 × 10−4 s−1. As the [TritonX-100] was greater than the cmc, the kobs values increases from 2.1 × 10−4 to 8.2 × 10−4 s−1 in presence of constant [HClO4] (1.16 mol dm−3) at 40 °C. A comparison was made of the oxidative degradation rates of TritonX-100 with different metal ion oxidants. The order of the effectiveness of different oxidants was as follows: permanganate > diperiodatoargentate(III) > chromium(VI) > cerium(IV).  相似文献   

20.
Recombination rate coefficients of protonated and deuterated ions KrH+, KrD+, XeH+ and XeD+ were measured using Flowing Afterglow with Langmuir Probe (FALP). Helium at 1600 Pa and at temperature 250 K was used as a buffer gas in the experiments. Kr, Xe, H2 and D2 were introduced to a flow tube to form the desired ions. Because of small differences in proton affinities of Kr, D2 and H2 mixtures of ions, KrD+/D3+ and KrH+/H3+ are formed in the afterglow plasma, influencing the plasma decay. To obtain a recombination rate coefficient for a particular ion, the dependencies on partial pressures of gases used in the ion formation were measured. The obtained rate coefficients, αKrD+(250 K) = (0.9 ± 0.3) × 10−8 cm3 s−1 and αXeD+(250 K) = (8 ± 2) × 10−8 cm3 s−1 are compared with αKrH+(250 K) = (2.0 ± 0.6) × 10−8 cm3 s−1 and αXeH+(250 K) = (8 ± 2) × 10−8 cm3 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号