首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nano-sized La1/2Nd1/2FeO3 (LNF) powder is synthesized by the sol–gel citrate method. The Rietveld refinement of the X-ray diffraction profile of the sample at room temperature (303 K) shows the orthorhombic phase with Pbnm symmetry. The particle size is obtained by transmission electron microscope. The antiferromagnetic nature of the sample is explained using zero field cooled and field cooled magnetisation and the corresponding hysteresis loop. A signature of weak ferromagnetic phase is observed in LNF at low temperature which is explained on the basis of spin glass like behaviour of surface spins. The dielectric relaxation of the sample has been investigated using impedance spectroscopy in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 513 K. The Cole–Cole model is used to analyse the dielectric relaxation of LNF. The frequency dependent conductivity spectra follow the power law. The magneto capacitance measurement of the sample confirms its multiferroic behaviour.  相似文献   

2.
In the current communication, structural, microstructural, dielectric, relaxor, impedance, AC conductivity, and electrical modulus characteristics of double perovskite Gd2NiMnO6 (synthesized by a solid state reaction route) as a function of temperature (25–125 °C) and frequency (1 kHz–1MHz) have mainly been reported. From preliminary X-ray structural analysis, it is found that the crystal structure of the material is monoclinic. In temperature dependence of dielectric constant analysis, relaxor behaviour of the material was observed. Such type of behaviour is described by modified Curie–Weiss law and a Vogel–Fulcher law. From Nyquist plots, the existence of grain and grain boundary effect in the material is observed. The non–Debye type of relaxation is confirmed from the complex impedance spectroscopy. From the impedance data, the determined grain resistance reduces with increment of temperature showing negative temperature co-efficient of resistance (NTCR)-type nature of the material which also confirmed from conductivity analysis. Again, non-Debye type of relaxation phenomena is observed from the analysis of modulus spectroscopy which is also proved by complex impedance plot. From these result it may be concluded that this material may be used for different high temperature applications.  相似文献   

3.
Multifunctional materials that exhibit different physical properties in a single phase have potential for use in multifunctional devices. Herein, we reported an organic–inorganic hybrid compound [(18‐crown‐6)K][Fe(1)Cl(1)4]0.5[Fe(2)Cl(2)4]0.5 ( 1 ) by incorporating KCl and FeCl3 into a 18‐crown‐6 molecule, which acts as a host of the six O atoms providing a lone pair of electrons to anchor the guest potassium cation, and [FeCl4]? as a counterion for charge balance to construct a complex salt. This salt exhibited a one‐step reversible structural transformation giving two separate high and low temperature phases at 373 K, which was confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable‐temperature structural analyses, and dielectric, impedance, variable‐temperature magnetic susceptibility measurements. Interestingly, the structural transformation was coupled to both hysteretic dielectric phase transition, conductivity switch and magnetic‐phase transition at 373 K. This result gives an idea for designing a new type of phase‐transition materials harboring technologically important magnetic, conductivity and dielectric properties.  相似文献   

4.
The data obtained by impedance spectroscopy (1 Hz to 32 MHz) and broad-band dielectric spectroscopy (30 GHz-150 THz) are presented for crystals based on zirconia doped by 1.5–30 mol % Y2O3 or 10 mol % Sc2O3 and 1 mol % Y2O3. The maximum of ionic conductivity is confirmed for the latter composition in the working temperature range of solid oxide fuel cells where the doping by scandium and yttrium oxides makes it possible to obtain isotropic single crystals. Dependences of dielectric permeability and high-frequency conductivity of materials on the composition of crystals and temperature are presented.  相似文献   

5.
Titanium dioxide (TiO2) thin films were deposited onto p‐Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80–200 W. The as‐deposited TiO2 films were annealed at a temperature of 1023 K. The post‐annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p‐Si structure were determined from the capacitance–voltage and current–voltage characteristics. X‐ray diffraction studies confirmed that the as‐deposited films were amorphous in nature. After post‐annealing at 1023 K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers > 160 W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air‐annealed Al/TiO2/p‐Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p‐Si (metal‐insulator‐semiconductor) was systematically investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Pure (Na0.50K0.50)0.95(Li0.05Sb0.05Nb0.95)O3 (NKNLS) and CuO doped NKNLS perovskite structured ferroelectric ceramics were prepared by the solid-state reaction method. x wt% of CuO (x = 0.2–0.8 wt%) was added in the NKNLS ceramics. X-ray diffraction patterns indicate that single phase was formed for pure NKNLS while a small amount of second phase (K6Li4Nb10O30 ∼ 3%) was present in Cu2+ doped NKNLS ceramics. Dielectric anomalies around the temperatures of 120 °C and 350 °C have been identified as the ferroelectric–paraelectric transition (orthorhombic to tetragonal and tetragonal to cubic) temperatures for pure NKNLS compound. The electrical behavior of the ceramics was studied by impedance study in the high temperature range. Impedance analysis has shown the grain and grain boundary contribution using an equivalent circuit model. The impedance response in pure and Cu2+ doped NKNLS ceramics could be resolved into two contributions, associated with the bulk (∼grains) and the grain boundaries. From the conductivity studies, it is found that activation energies are strongly frequency dependent. The activation energy obtained from dielectric relaxation data may be attributed to oxygen ion vacancies.  相似文献   

7.
Ferromagnetic and superparamagnetic oxide nanoparticles are of particular attention because of their possible use in various fields ranging from bio-nanotechnology to spintronics. Detailed magnetic, dielectric and impedance investigations are crucial for the above-mentioned applications. This study deals with the exploration of various iron oxide phases under as-synthesized conditions by sol–gel method. pH of the sols is varied in the range of 1 to 11. X-ray diffraction (XRD) analysis indicate amorphous behavior for nanoparticles synthesized using pH 1 and 3. Nanoparticles synthesized using pH 2 and 4–6 exhibit hematite phase of iron oxide. Whereas structural transition to maghemite phase is observed for pH 7–8. Nanoparticles synthesized using high pH values, i.e. 9–11, exhibit structural transition towards magnetite phase of iron oxide. Hematite nanoparticles exhibit superparamagnetic and ferromagnetic hysteresis curves with saturation magnetization of ~ 24 emu/g and ~ 13–17 emu/g at pH 2 and pH 4–6, respectively. Maghemite nanoparticles exhibit superparamagnetic (pH 7) and ferromagnetic (pH 8) response with saturation magnetization of ~ 69 and ~ 42 emu/g, respectively. Fe3O4 nanoparticles exhibit superparamagnetic (pH 9–10) and ferromagnetic (pH 11) behavior with saturation magnetization of ~ 88, 87 and 52 emu/g, respectively. High grain boundary resistance contributed towards high dielectric constant of ~ 99, 109 and 154 (log f = 5.0) at pH 2, 7 and 9. Detailed impedance values indicate dominant role of grain boundaries in the conductivity of iron oxide nanoparticles. Superparamagnetic iron oxide (pH 9) exhibits strong antioxidant activity along with a very weak hemolytic response. The findings of cell lysis reveal that synthesized nanoparticles have a potential to combat dangerous cancer cells. Drug efficacy results show that after 120 min the encapsulation efficacy reaches a peak of ~ 83 % using curcumin, a naturally existing drug. In vivo biodistribution of nanoparticles was studied in Rabbit model. Synthesized nanoparticles are labelled using Technetium-99 m. Whereas, labeling efficacy and stability was examined using =nstant thin layer chromatography (ITLC) process. In vitro and in vivo results suggest potential anti-cancer applications of as-synthesized superparamagnetic nanoparticles.  相似文献   

8.
The temperature‐ and electric field‐dependent dielectric relaxation and polarisation of a new chiral swallow tailed antiferroelectric liquid crystal, i.e. 1‐ethylpropyl (S)‐2‐{6‐[4‐(4′‐decyloxyphenyl)benzoyloxy]‐2‐naphthyl}propionate (abbreviated as EP10PBNP), were investigated. The electric field‐induced dielectric loss spectra of EP10PBNP revealed electroclinic and anomalous dielectric behaviour in the chiral smectic A (SmA*)–chiral antiferroelectric smectic C (SmCA*) pre‐transitional regime. From an analysis of thermal hysteresis of the dielectric constant, electric field‐induced polarisation and dielectric loss spectra, the appearance of a ferrielectric‐like mesophase is observed followed by an unstable SmCA* phase in the SmA*–SmCA* pre‐transitional regime.  相似文献   

9.
Present paper reports the synthesis of multiferroic composite (1-x) [Ba0.8Sr0.2Ti)O3]-x[Co0.9Ni0.1Fe2O4] were x = 0.1, 0.2, 0.3 and 0.4. Both phases of the composite i.e. ferroelectric (BST) and ferrite (CNFO) are synthesized via hydroxide co-precipitation method followed by microwave sintering technique at 1100 °C. These composites were characterized for their structural, microstructural, dielectric analysis, magnetodielectric (MD) effect and ferroelectric properties. Presence of both the phases ferroelectric (BST) and ferromagnetic (CNFO) are confirmed by the x-ray diffraction and scanning electron microscopic analysis. Maxwell-Wagner type dielectric dispersion is observed in frequency dependent dielectric measurement. Temperature-dependent dielectric properties were measured from 25 °C to 500 °C at various applied frequencies. Ferroelectric behavior in the composites was confirmed by the polarization vs. Electric field analysis. The magnetodielectric effect was studied in the presence of applied magnetic field from 0 to 1 Tesla. Magnetocapacitance (%) increases with increase in the ferrite concentration in the ferroelectric phase. The maximum percentage of magnetocapacitance is observed in 60BST-40CNFO composite which is MC = 30% at the frequency 1 KHz with the applied magnetic field is 1-Tesla. Room temperature magnetic hysteresis loops show an increase in saturation magnetization (Ms) with an increase in ferrite concentration.  相似文献   

10.
A new molecular phase transition material, [PhCH2NH(CH3)2]2C2O4?H2C2O4, which undergoes a reversible phase transition at 151.6 K, has been successfully synthesized. Differential scanning calorimetry (DSC), specific heat capacity, and dielectric measurements confirm its reversible phase transition with a large thermal hysteresis of 15.1 K, demonstrating that the phase transition is typical first order. Variable‐temperature single‐crystal X‐ray diffraction analyses reveal that the order–disorder transformations of carboxy oxygen atoms induce the structural phase transition. A slight reorientation of the oxalic acid unit is discovered to accompany the ordering of carboxy oxygen atoms at low temperature. The DSC measurement result of the deuterated analog is different to that of 1 , indicating that proton dynamic motions in hydrogen bonds also contribute to the phase transition.  相似文献   

11.
The interaction of Fe2O3 nanoparticles emphasized between poly(propylene glycol) (PPG 4000) and silver triflate (AgCF3SO3) on the conformal changes of coordination sites and the electrochemical properties have been investigated. On the influence of Fe2O3 nanoparticles distribution, the interactions between the ether oxygen in C–O–C of the polymer chain with Ag+ ion as a result of bond strength of the C–O–C stretching vibration, the end group effect has been examined by Fourier transform infrared (FT-IR) spectroscopy. The formation of transient cross-links between polymer chains and filler particles appears to be a characteristic change in the glass transition temperature (T g) and enhance the effective number of cations as well. The strength of ion–polymer interactions was revealed by the transport of ions, t Ag+, and found to be in the range of 0.42–0.50, and the ionic conductivity was ascertained by complex impedance analysis with a maximum of 9.2?×?10?4 S cm?1 at 298 K with a corresponding concentration of 10 wt% Fe2O3 nanoparticles. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. From the impedance data, both the dielectric and modulus behaviours have been revealed and both were well correlated as a function of frequency.  相似文献   

12.
A series of liquid crystalline compounds having the difluoropropyleneoxy moiety (–OCF2C2H4–) as a linking group has been synthesized. The physical properties, i.e. dielectric anisotropy, birefringence, viscosity and phase transition temperatures, have been measured. This novel class of compounds shows a larger negative dielectric anisotropy than the corresponding compounds having a propyleneoxy (–OC3H6–) linking group. Their dielectric properties may be explained by the combined effect of fluorine atoms with large electron negativities and the electron donating feature of an oxygen atom substituted on the same carbon atom. The semi‐empirical quantum calculation method (AM1) also confirmed this dielectric behaviour of the difluoropropyleneoxy linkage group.  相似文献   

13.
Piezoelectric crystal of betaine–selenious acid (abbreviated as B–H2SeO3) was studied at various temperatures by X-ray diffraction, differential scanning calorimetry, dielectric and vibrational spectroscopy methods. The latter was made by applying polarized techniques for the single crystal samples (Raman, infrared transmission and reflection spectra) and for the polycrystalline samples as well. B–H2SeO3 crystallizes in non-centrosymmetric space group (Fdd2) of orthorhombic system and does not reveal any phase transition. The high piezoelectric effect makes this crystal a candidate for nonlinear optical applications. Detailed analysis of the polarized vibrational spectra in relation to the B–H2SeO3 crystal structure is presented.  相似文献   

14.

This study focused on the fabrication of poly(n-butyl methacrylate) (PBMA) nanocomposites with various concentrations of cerium-doped titanium dioxide (Ce–TiO2) nanoparticles via in situ polymerization technique. The structural characterization and the material properties of all the composites were analyzed by UV–visible, FTIR, XRD, SEM, DSC, TG, and tensile strength measurements. The UV–visible and FTIR studies confirmed the effective inclusion of Ce–TiO2 nanoparticles into the PBMA matrix. The change in amorphous morphology of PBMA to a crystalline structure was observed from the XRD pattern. The SEM morphology revealed the attachment of nanoparticles in the polymer matrix. The inclusion of Ce–TiO2 nanoparticles enhanced the glass transition temperature, and thermal stability of the PBMA matrix was revealed from DSC and TG, respectively. The tensile strength of PBMA was greatly enhanced by the addition of Ce–TiO2 nanoparticles. The AC conductivity, dielectric constant, and dielectric loss studies were also performed in the frequency range 102–106 Hz, and it was observed that addition of Ce–TiO2 nanoparticles greatly enhanced the electrical properties of PBMA. The change in dielectric constant with the addition of nanoparticles was correlated with a theoretical modeling study. This work also extended to study the role of Ce–TiO2 nanoparticles in the reinforcing mechanism of the nanocomposite by comparing the actual tensile strength of the composite with different theoretical modeling. The high dielectric constant and tensile strength of composite are beneficial in designing lightweight and highly efficient nanoelectronic materials based on the family of polybutyl acrylates.

  相似文献   

15.
Pb0.4Sr0.6TiO3 (PST) thin films doped with various concentration of Bi were prepared by a sol-gel method. The phase status, surface morphology and dielectric properties of these thin films were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance analyzer, respectively. Results showed that the thin films with the maximum dielectric constant and minimum dielectric loss were obtained for x=0.15. For x<0.15, only pure PST perovskite phase were in the thin films. For 0.2<x<0.4, the PST/Bi2Ti2O7 biphase were obtained. The thin films with pure Bi2Ti2O7 pyrochlore phase were obtained for x=0.67. The biphase thin films had high tunability and high figure of merit (FOM). The FOM of PST/Bi2Ti2O7 biphase thin film was about 6 times higher than that thin films formed with pure perovskite phase or pure pyrochlore phase.  相似文献   

16.
Pyrochlore phase free Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics have been synthesized successfully by chemical co-precipitation method. It has been noted that formation of perovskite phase Pb(Mg1/3Nb2/3)0.65Ti0.35O3 without pyrochlore phase is tricky. The synthesized samples at optimized parameters were characterized using X-ray diffraction technique. Careful analysis of the XRD data predicts the tetragonal lattice structure. The morphological studies depict the presence of uniform grain size. Dielectric constant (ε′) and loss tangent (tan δ), at and well above room temperature, were studied. The variation of dielectric constant with temperature shows sharp peak at ferroelectric–paraelectric transition temperature. Further, the temperature dependent dielectric constant shows good fit with modified Curie–Weiss law, which suggests normal ferroelectric behavior of Pb(Mg1/3Nb2/3)0.65Ti0.35O3.  相似文献   

17.
The preferential formation of a pyrochlore structure is a knotty problem in the preparation of Pb(Zn1/3Nb2/3)O3 (PZN)-based thin film materials and its presence is significantly detrimental to the dielectric and piezoelectric properties. In this study, 40 mol% of PZN was replaced with Pb(Mg1/3Nb2/3)O3 (PMN) for obtaining a perovskite composition around a morphotropic phase boundary (MPB), (1−x)(0.6PZN-0.4PMN)-xPT ((1−x)PZMN-xPT, PT: PbTiO3) where x = 0.23. The thin films with this composition were prepared with a polyethylene glycol (PEG) modi-fied sol-gel method on LaAlO3 substrates. The microstructural evolution of the films on heat treatment was examined with X-ray diffraction. With the aid of PEG, the formation of the pyrochlore phase was suppressed and the perovskite phase formed directly from the amorphous gel film. The multilayer films with a thickness around 0.25 μm showed a single perovskite phase without any detectable pyrochlore structure. Microscopic images showed uniform grain size of a few tens of nanometers. The role of the polymer dramatically promoting the perovskite phase was investigated with the aid of X-ray photoelectron spectroscopy and thermal analysis. The dielectric constant of the obtained film was 4160 at 1 kHz. The film demonstrated typical ferroelectric hysteresis loops and exhibited excellent piezoelectric performance.  相似文献   

18.
Lithium-containing bismuth titanates with the pyrochlore-type structure Bi1.6LixTi2O7–δ were obtained for the first time. The formation of the pyrochlore phase was confirmed by X-ray diffraction analysis, scanning electron microscopy and local microanalysis. In Bi1.6MxTi2O7–δ, the lithium and indium are occupied the bismuth sites, primarily. The electrophysical properties of doped bismuth titanates were studied by impedance spectroscopy in the frequency range 1–106 Hz. In the low-temperature range (of up to ~400°C), electron conductivity predominates; above 400°C, the oxygen-ion type of conductivity is revealed. In the range p(O2) = 0.21–1 atm, the average value of the sum of ion transport numbers is 0.5 at 500–550°C. The relaxation process was found from the frequency dependences of the dielectric parameters (ε', tan δ, M''), which was of the same type for systems with different dopants (In, Li) probably due to the hopping mechanism of oxygen conductivity.  相似文献   

19.
《Solid State Sciences》2012,14(3):330-334
The frequency dependence of electric modulus of polycrystalline CaCu3Ti4O12 (CCTO) ceramics has been investigated. The experimental data have also been analyzed in the complex plane of impedance and electric modulus, and a suitable equivalent circuit has been proposed to explain the dielectric response. Four dielectric responses are first distinguished in the impedance and modulus spectroscopies. The results are well interpreted in terms of a triple insulating barrier capacitor model. Using this model, these four dielectric relaxations are attributed to the domain, domain-boundary, grain-boundary, and surface layer effects with three Maxwell–Wagner relaxations. Moreover, the values of the resistance and capacitance of bulk CCTO phase, domain-boundary, grain-boundary and surface layer contributions have been calculated directly from the peak characteristics of spectroscopic plots.  相似文献   

20.
In order to enhance dielectric properties and energy storage density of poly(vinylidene fluoride‐hexafluoro propylene) (PVDF‐HFP), surface charged gas‐phase Al2O3 nanoparticles (GP‐Al2O3, with positive surface charges, ε’ ≈ 10) are selected as fillers to fabricate PVDF‐HFP‐based composites via simple physical blending and hot‐molding techniques. The results show that GP‐Al2O3 are dispersed homogeneously in the PVDF‐HFP matrix and the existence of nanoscale interface layer (matrix‐filler) is investigated by SAXS. The dielectric constant of the composites filled with 10 wt % GP‐Al2O3 is 100.5 at 1 Hz, which is 5.6 times higher than that of pure PVDF‐HFP. The maximum energy storage density of the composite is 4.06 J cm?3 at an electrical field of 900 kV mm?1 with GP‐Al2O3 content of 1 wt %. Experimental results show that GP‐Al2O3 could induce uniform fillers’ distribution and increase the concentration of electroactive β‐phase as well as enhance interfacial polarization in the matrix, which resulted in enhancements of dielectric constant and energy storage density of the PVDF‐HFP composites. This work demonstrates that surface charged inorganic‐oxide nanoparticles exhibit promising potential in fabricating ferroelectric polymer composites with relatively high dielectric constant and energy storage. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 574–583  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号