首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloud point (C(P)) was measured for ternary mixtures of different ionic surfactants such as sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and dimethylene bis(dodecyldimethylammonium bromide) (12-2-12) plus triblock polymer (TBP) ((PEO)(2)(PPO)(15.5)(PEO)(2)) plus water, keeping the concentration of TBP constant and varying the surfactant concentration from pre- to postmicellar regions. These experiments were also performed in the presence of different fixed amounts of NaBr to evaluate the salt effect on the clouding behavior of these ternary mixtures. The C(P) value of TBP exhibits a drastic change at the cmc of each surfactant. The cmc values thus obtained both in the absence and in the presence of NaBr were used to evaluate counterion binding (beta) with the Corrin-Harkins method. beta values were also used to evaluate the thermodynamic parameters of these ionic surfactants. The results suggest that the beta values evaluated using this method, especially at low [TBP], are in good agreement with those reported in the literature.  相似文献   

2.
The effects of protonation on alkyldimethyl amine oxide micelles are reviewed, mainly with regard to dodecyl and tetradecyl homologs. The topics discussed are hydrogen ion titration properties, critical micelle concentration (CMC), area per surfactant and micelle aggregation number. A hydrogen bond hypothesis is proposed to interpret the several characteristic results associated with protonation: between two cationic species as well as between the non-ionic-cationic pair. The dipole-dipole interaction of the non-ionic micelle is discussed in relation to both: (a) the unusually high CMC values of the non-ionic micelles compared with other non-ionic surfactants with the same hydrocarbon chain; and (b) the reversal of the stability of the non-ionic and the cationic micelles at high ionic strengths. Two different approaches of the salting out effect on the ionic micelles are compared, the Chan-Mukerjee approach and ours, in relation to the non-linear Corrin-Harkins relation. The obtained salting out constants of the surfactants carrying a dodecyl chain decreased as the head group becomes more polar. Infrared and 13C-NMR spectra data are examined from the point of the specific interaction claimed by the hydrogen bond model. Mixed surfactant systems including amine oxides and the solid state phase behavior of amine oxides are both briefly reviewed.  相似文献   

3.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

4.
A lattice model for ionic surfactants with explicit counterions is proposed for which the micellization behavior can be accurately determined from grand canonical Monte Carlo simulations. The model is characterized by a few parameters that can be adjusted to represent various linear surfactants with ionic headgroups. The model parameters have a clear physical interpretation and can be obtained from experimental data unrelated to micellization, namely, geometric information and solubilities of tail segments. As a specific example, parameter values for sodium dodecyl sulfate were obtained by optimizing for the solubility of hydrocarbons in water and the structural properties of dodecane. The critical micelle concentration (cmc), average aggregation number, degree of counterion binding, and their dependence on temperature were determined from histogram reweighting grand canonical Monte Carlo simulations and were compared to experimental results. The model gives the correct trend and order of magnitude for all quantities but underpredicts the cmc and aggregation number. We suggest ways to modify the model that may improve agreement with experimental values.  相似文献   

5.
We show in this study that the concepts of nonextensive thermodynamics introduced and applied in a series of previous studies can be used to describe the behaviour of ionic surfactant solutions at concentrations higher than the critical micelle concentration (cmc) in pure solvents and in the presence of electrolytes. We supposed that the aggregated amphiphiles and their counter ions form two interpenetrated nonextensive phases of the same thermodynamic dimension, m, characterised by two parameters A(am) and A(CI) related to the aggregated amphiphile and the counter ion, respectively. Our experimental results and those published in the literature indicate that logarithms of the activities of the amphiphile and of its counterion vary with the quantity of aggregated monomer according to a power law. Thus, we demonstrate a linear relation between the logarithms of the activities of the two ions beyond the cmc in pure solvents ("micellization product"). An original relation, different from the Corrin-Harkins relation, can thus be established to describe the effects of salt on the cmc of ionic surfactants. According to this relation the cmc of charged surfactant in some systems can increase in the presence of an electrolyte with a common ion.  相似文献   

6.
We reported previously (Macromolecules 2003, 36, 5321; Langmuir, 2004, 20, 7412) that amphiphilic diblock copolymers having polyelectrolytes as a hydrophilic segment show almost no surface activity but form micelles in water. In this study, to further investigate this curious and novel phenomenon in surface and interface science, we synthesized another water-soluble ionic amphiphilic diblock copolymer poly(hydrogenated isoprene)-b-sodium poly(styrenesulfonate) PIp-h2-b-PSSNa by living anionic polymerization. Several diblock copolymers with different hydrophobic chain lengths were synthesized and the adsorption behavior at the air/water interface was investigated using surface tension measurement and X-ray reflectivity. A dye-solubilization experiment was carried out to detect the micelle formation. We found that the polymers used in this study also formed micelles above a certain polymer concentration (cmc) without adsorption at the air-water interface under a no-salt condition. Hence, we further confirmed that this phenomenon is universal for amphiphilic ionic block copolymer although it is hard to believe from current surface and interface science. For polymers with long hydrophobic chains (more than three times in length to hydrophilic chain), and at a high salt concentration, a slight adsorption of polymer was observed at the air-water interface. Long hydrophobic chain polymers showed behavior "normal" for low molecular weight ionic surfactants with increasing salt concentration. Hence, the origin of this curious phenomenon might be the macroionic nature of the hydrophilic part. Dynamic light scattering analysis revealed that the hydrodynamic radius of the block copolymer micelle was not largely affected by the addition of salt. The hydrophobic chain length-cmc relationship was found to be unusual; some kind of transition point was found. Furthermore, very interestingly, the cmc of the block copolymer did not decrease with the increase in salt concentration, which is in clear contrast to the fact that cmc of usual ionic small surfactants decreases with increasing salt concentration (Corrin-Harkins law). These behaviors are thought to be the special, but universal, characteristics of ionic amphiphilic diblock copolymers, and the key factor is thought to be a balance between the repulsive force from the water surface by the image charge effect and the hydrophobic adsorption.  相似文献   

7.
The dependence of the stability of ionic micelles on the ionic strength of the medium is examined analytically without recourse to any explicit expression of the surface potential of micelles. The present study is based on the idea developed by Evans, Mitchell, and Ninham (D. F. Evans, D. J. Mitchell, and B. W. Ninham, J. Phys. Chem. 88, 6344 (1984)) that the interfacial free energy at the water/hydrocarbon core interface is independent of the ionic strength of the medium. The Corrin-Harkins (C-H) relation, a linear relation between the logarithm of the critical micelle concentration (cmc) and the logarithm of the counterion concentration n(C), is obtained in the range of n(C) where the salting-out effect is negligible, under the condition that the area per monomer on the micelle surface decreases very weakly with n(C). The "micellization product" of the charged pseudophase model of ionic micelles is discussed. The linear dependence of the surface potential of ionic micelles on n(C) is derived while a part of the effects of salt on the micelle size/shape is allowed. Copyright 2001 Academic Press.  相似文献   

8.
On the basis of a detailed physicochemical model, a complete system of equations is formulated that describes the equilibrium between micelles and monomers in solutions of ionic surfactants and their mixtures with nonionic surfactants. The equations of the system express mass balances, chemical and mechanical equilibria. Each nonionic surfactant is characterized by a single thermodynamic parameter — its micellization constant. Each ionic surfactant is characterized by three parameters, including the Stern constant that quantifies the counterion binding. In the case of mixed micelles, each pair of surfactants is characterized with an interaction parameter, β, in terms of the regular solution theory. The comparison of the model with experimental data for surfactant binary mixtures shows that β is constant — independent of the micelle composition and electrolyte concentration. The solution of the system of equations gives the concentrations of all monomeric species, the micelle composition, ionization degree, surface potential and mean area per head group. Upon additional assumptions for the micelle shape, the mean aggregation number can be also estimated. The model gives quantitative theoretical interpretation of the dependence of the critical micellization concentration (CMC) of ionic surfactants on the ionic strength; of the CMC of mixed surfactant solutions, and of the electrolytic conductivity of micellar solutions. It turns out, that in the absence of added salt the conductivity is completely dominated by the contribution of the small ions: monomers and counterions. The theoretical predictions are in good agreement with experimental data.  相似文献   

9.
Precipitation or coprecipitation of polyelectrolytes has been largely investigated. However, the precipitation of polyelectrolytes via addition of charged and non‐charged surfactants has not been systematically studied and reported. Consequently, the aim of this work is to investigate the effect of different surfactants (anionic, cationic, non‐charged and zwitterionic) on the precipitation of cationic and anionic polymethylmethacrylate polymers (Eudragit). The surfactants effect has been investigated as a function of their concentration. Special attention has been dedicated to the CMC range and to the colloidal characterization of the formed dispersions. Moreover, the effect of salt (NaCl) and pH was also addressed. It is pointed out that non‐ionic and zwitterionic surfactants do not interact with charged Eudragit E100 and L100. For oppositely charged Eudragit E100/SDS and Eudragit L100/CTAB, precipitation occurs, and the obtained dispersions have been characterized in terms of particle size distribution and zeta potential. It was established that the binding of SDS molecules to Eudragit E100 polymer chains is made through the negative charges of the surfactant heads under the CMC value whereas binding of CTAB to Eudragit L100 chains is made at a CTAB concentration 5 times above its CMC. For Eudragit E100/SDS system, a more acidic medium induces aggregation. A same result was observed for the Eudragit L100/CTAB at a more basic pH. Moreover, it was observed that increasing salt concentration (higher than 100 mM) led to aggregation as generally observed for polycations/anionic surfactant systems.  相似文献   

10.
The cloud point (C P) measurements of aqueous solutions of a triblock polymer (TBP) [(PEO)2.5(PPO)31(PEO)2.5], in the presence of varying amounts of cationic surfactants (monomeric and dimeric alkylammoniumbromides) covering premicellar to postmicellar regions, have been carried out. A plot of C P vs surfactant concentration allowed us to evaluate apparent critical micelle concentration (cmc*), which has been found to decrease with an increase in the amount of salt. The cmc* values thus obtained in the absence and presence of salt allowed us to evaluate counterion binding (β) by using the Corrin–Harkins method. β values have been further used to evaluate the thermodynamic parameters of these ionic surfactants. The results suggest that the β values evaluated using this method, especially at low [TBP], are in good agreement with those already reported in the literature.  相似文献   

11.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

12.
We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic strength as additional control parameters. At high ionic strength, the solvent quality for the surfactant head groups is affected, which changes both the bulk and the adsorption behavior of the surfactant. For example, with increasing ionic strength, the CMC drops and the aggregation increases. Surfactants adsorb above the critical surface association concentration (CSAC). The CSAC is a function of the surfactant and the surface properties. Therefore, the CSAC varies with both the ionic strength and the pH. We predict that with increasing ionic strength, the CSAC will first slightly increase but then drop substantially. The charge on the surface is pH dependent, and as the head groups bind through H-bonding to the silanol groups, the CSAC increases with increasing pH. We focus on adsorption/desorption transitions for the surfactants and compare these to the experimental data. Both the equilibrium predictions and the consequences for the kinetics of adsorption follow experimental findings. Our results show that molecularly realistic models can reveal a much richer interfacial behavior than anticipated from more generic models.  相似文献   

13.
The thermodynamics of binding of two small hydrophobic ions such as norharman and tryptophan to neutral and negatively charged small unilamellar vesicles was investigated at pH 7.4 using fluorescence spectroscopy. Vesicles were formed at room temperature from dimyristoyl phosphatidylcholine (DMPC) or DMPC/dimyristoylphosphatidic acid and DMPC/dimyristoylphosphatidylglycerol. The changes in fluorescence properties were used to obtain association isotherms at variable membrane surface negative charge and at different ionic strengths. The binding of both ions was found to be quantitatively enhanced as the percentage of negative phospholipid increases in the membrane. Also, a decrease in ion binding was found to occur as the concentration of monovalent salt was increased (0.045-0.345 M). If electrostatic effects were ignored, the experimental data showed biphasic behavior in Scatchard plots. When electrostatic effects were taken into account by means of the Gouy-Chapman theory, the same data yielded linear Scatchard plots that were described by a simple partition equilibrium of the hydrophobic ion into the lipid-water interface. We demonstrate that the effective interfacial charge, nu, of the ion is a determinant factor to obtain a unique value of the intrinsic (hydrophobic) binding constant independently of the surface charge density of the lipid membrane.  相似文献   

14.
A thermodynamic analysis is presented for electrically charged mixed micelles in water on the basis of the Gibbs-Duhem relation proposed by Hall in combination with the information on the degree of counterion binding. The proposed analyses are shown to work well for both ionic/nonionic mixed micelles and those consisting of ionic surfactants of like charges. Conclusions for ionic/nonionic mixed micelles are as follows. (1) The contribution from counterions is significant. (2) In media of low ionic strengths, the counterion concentration varies with the micellar mole fraction of the ionic species x. The dependency of the activity coefficients and the excess free energy on x is significantly influenced by this effect, but it can be corrected to a large extent in terms of the Corrin-Harkins relation. (3) The regular solution theory (RST) is not always valid even when the excess free energy is described well with the RST expression unless the observed range of the micelle composition is wide enough. (4) The RST overestimates x and underestimates the activity coefficient of the ionic species when applied to the mixed micelles to which it is inapplicable. For the ionic mixed micelles consisting of surfactants of like charges, the Lange-Shinoda approach is shown to be consistent with the present analysis in terms of the Gibbs-Duhem relation, but Motomura's approach is found to be not exact but approximate.  相似文献   

15.
Long-chain amidosulfobetaine surfactants, 3-(N-fattyamidopropyl-N,N-dimethyl ammonium) propanesulfonates (n-DAS, n > 18), are insoluble in pure water due to their high Krafft temperature (T(K)), while they are soluble when inorganic salt is added to the surfactant solution as the T(K) of these zwitterionic surfactants is decreased. The influence of the salt content and ionic species of the added electrolytes on the T(K) of the series of amidosulfobetaine surfactants was examined by means of UV-vis spectrophometry and visual inspection. It was found that the T(K) of these surfactants depends strongly on not only the hydrophobic alkyl length (n), but also the salinity of the aqueous environment. When the salt concentration is increased from 0 to 100 mM, the T(K) shows a sharp decrease; when the salinity is fixed between 100 and 2000 mM, the T(K) varies linearly with n with a slope of ~7.7 irrespective of the salt species and the salt content. When the salt concentration is further increased above 2000 mM, a linear function is still observed, but the slope increases slightly.  相似文献   

16.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

17.
Sodium cholate (NaC) was used as a representative bile salt in the process of cooperative binding to bovine serum albumin (BSA) in a mixture with sodium dodecyl sulfate (SDS). The experiments were performed in 0.02 M Tris-HCl buffer solution (pH 7.50), in the presence of 0.1% BSA and at 25 degrees C. The aim of this study is to provide information on the performance of the BSA in the promotion of cooperative binding of sodium cholate promoted by the presence of SDS. The method used to monitor the binding was based on the analysis of the effect of SDS and NaC concentrations and their mixtures upon the fluorescence intensity of the BSA tryptophan residues. Plots of the fluorescence emission bands in terms of the A0/A ratio vs surfactant concentrations, where A0 and A represent the areas of emission bands in the presence and absence of the surfactants, respectively, were drawn in order to investigate the surfactant interaction with the protein. An alternative methodology, the specific conductivity vs surfactant concentration plots, was used, which involves mixtures of SDS and NaC to investigate the association processes, through the determination of the critical aggregation concentration (cac, when in the presence of protein) and the critical micellar concentration (cmc). The results led to a general conclusion that as the mixed micellar aggregates become richer in the bile salt monomer, the tendency to lose the reactivity with the protein increases. According to our results, a clear evidence of the predomination of BSA-SDS-NaC complexes is found only for the SDS molar fraction above approximately 0.6, and below this fraction a tendency toward free mixed micelles starts to predominate.  相似文献   

18.
We use a realistic molecular model to study the interfacial behavior of hydrocarbon sulfate surfactants within a self-consistent field model and consider the adsorption both at the air-water interface and at a hydrophobic solid-water interface. We focus on the structural properties of the hemimicelles at the critical interface aggregation concentration (CIAC) for the air-water system and the critical surface aggregation concentration (CSAC) for the solid-water system. The major difference between the two systems is that the liquid interface is penetrable but the solid surface is intrinsically impenetrable for the molecular species. At the LG interface the hemimicelles have a lens shape with their centers of mass positioned slightly toward the aqueous side and feature an aspect ratio of approximately 2, with the long dimension parallel to the interface. Hemimicelle formation occurs below a critical (interfacial) area per molecule and above a critical surface pressure depending on tail length and ionic strength. Hemimicelles are not expected at air-water interfaces for a surfactant with a tail length ( t) lower than 15 CH2 units. In contrast, at a hydrophobic solid the formation of laterally inhomogeneous micelles even takes place for surfactants with the tail length as short as t = 12. This difference is attributed to the screening of the lateral interactions in the vapor phase. The shape of surface hemimicelles is caplike (or half-lens) with an aspect ratio lower than 2 and the long dimension parallel to the solid surface. The tail length, the ionic strength, the adsorption energies, and the surfactant concentration have an effect on the surface micelle properties such as the aggregation number and size and shape.  相似文献   

19.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

20.
In contrast to self-assembled aggregates of conventional ionic (including polymeric) surfactants the equilibrium micelles of diblock copolymer with a pH-sensitive polyelectrolyte block can exhibit two inverse sequences of morphological transitions triggered by an increase in solution salinity. The direct sequence of the sphere-cylinder-lamella transitions is similar to that for the copolymer with a strongly dissociating ionic block and occurs at a high salt concentration in solution. The abnormal reversed sequence of the lamella-cylinder-sphere transitions is predicted to occur at relatively low ionic strength in solution. The origin of the reentrant transitions is coupling between aggregation and ionization in copolymer micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号