首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a planar system of ordinary differential equations is considered, which is a modified Leslie‐Gower model, considering a Beddington‐DeAngelis functional response. It generates a complex dynamics of the predator‐prey interactions according to the associated parameters. From the system obtained, we characterize all the equilibria and its local behavior, and the existence of a trapping set is proved. We describe different types of bifurcations (such as Hopf, Bogdanov‐Takens, and homoclinic bifurcation), and the existence of limit cycles is shown. Analytic proofs are provided for all results. Ecological implications and a set of numerical simulations supporting the mathematical results are also presented.  相似文献   

2.
In this paper, a Leslie-type predator–prey system with simplified Holling type IV functional response and strong Allee effect on prey is proposed. The dissipativity of the system and the existence of all possible equilibria are investigated. The investigation emphasizes the exploring of bifurcation. It is shown that the system exists several non-hyperbolic positive equilibria, such as a weak focus of multiplicities one and two, (degenerate) saddle–nodes and Bogdanov–Takens singularities (cusp case) of codimensions 2 and 3. At these equilibria, it is proved that the system undergoes various kinds of bifurcations, such as saddle–node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation and Bogdanov–Takens bifurcation of codimensions 2 and 3. With the parameters selected properly, there exhibits a limit cycle, a homoclinic loop, two limit cycles, a semistable limit cycle, or the simultaneous occurrence of a homoclinic loop and a limit cycle in the system. Moreover, it is also proved that the system has a cusp of codimension at least 4. Hence, there may exist three limit cycles generated from Hopf bifurcation of codimension 3. Numerical simulations are done to support the theoretical results.  相似文献   

3.
This work is concerned with the dynamics of a Leslie–Gower predator–prey model with nonmonotonic functional response near the Bogdanov–Takens bifurcation point. By analyzing the characteristic equation associated with the nonhyperbolic equilibrium, the critical value of the delay inducing the Bogdanov–Takens bifurcation is obtained. In this case, the dynamics near this nonhyperbolic equilibrium can be reduced to the study of the dynamics of the corresponding normal form restricted to the associated two-dimensional center manifold. The bifurcation diagram near the Bogdanov–Takens bifurcation point is drawn according to the obtained normal form. We show that the change of delay can result in heteroclinic orbit, homoclinic orbit and unstable limit cycle.  相似文献   

4.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, a modified Holling–Tanner predator–prey model is analyzed, considering important aspects describing the interaction such as the predator growth function is of a logistic type; a weak Allee effect acting in the prey growth function, and the functional response is of hyperbolic type. Making a change of variables and time rescaling, we obtain a polynomial differential equations system topologically equivalent to the original one in which the non‐hyperbolic equilibrium point (0,0) is an attractor for all parameter values. An important consequence of this property is the existence of a separatrix curve dividing the behavior of trajectories in the phase plane, and the system exhibits the bistability phenomenon, because the trajectories can have different ω ? limit sets; as example, the origin (0,0) or a stable limit cycle surrounding an unstable positive equilibrium point. We show that, under certain parameter conditions, a positive equilibrium may undergo saddle‐node, Hopf, and Bogdanov–Takens bifurcations; the existence of a homoclinic curve on the phase plane is also proved, which breaks in an unstable limit cycle. Some simulations to reinforce our results are also shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

7.
The weak Allee effect on the predator is introduced into the classic predator–prey model of Lotka–Volterra type. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. It is shown that the weak Allee effect can bring rich and complicated dynamics to the previous simple model, such as the saddle–node bifurcation, subcritical and supercritical Hopf bifurcations, and Bogdanov–Takens bifurcations, implying that weak Allee effect can be one of the simple reasons for many complicated behaviours in the predator–prey communities.  相似文献   

8.
ABSTRACT. . This paper aims to study the effect of time‐delay and combined harvesting on a Michaelis‐Menten type ratio‐dependent predator‐prey system. Dynamical behaviors such as persistence, stability, bifurcation, et cetera, are studied critically. Computer simulations are carried out to illustrate our analytical findings.  相似文献   

9.
In this paper, we investigate a class of predator–prey model with age structure and discuss whether the model can undergo Bogdanov–Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator–prey model has an unique positive equilibrium which is Bogdanov–Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov–Takens bifurcation in a small neighborhood of this positive equilibrium.  相似文献   

10.
In this paper, complete analysis is presented to study codimension-2 bifurcations for the nonlinear Kaldor model of business cycle. Sufficient conditions are given for the model to demonstrate Bautin and Bogdanov–Takens (BT) bifurcations. By computing the first and second Lyapunov coefficients and performing nonlinear transformation, the normal forms are derived to obtain the bifurcation diagrams such as Hopf, homoclinic and double limit cycle bifurcations. Some examples are given to confirm the theoretical results.  相似文献   

11.
Yu  Pei  Zhang  Wenjing 《Journal of Nonlinear Science》2019,29(5):2447-2500

This paper is concerned with complex dynamical behaviors of a simple unified SIR and HIV disease model with a convex incidence and four real parameters. Due to the complex nature of the disease dynamics, our goal is to explore bifurcations including multistable states, limit cycles, and homoclinic loops in the whole parameter space. The first contribution is the proof of the existence of multiple limit cycles giving rise from Hopf bifurcation, which further induces bistable or tristable states because of the coexistence of stable equilibria and periodic motion. Next, we propose that the existence of Bogdanov–Takens (BT) bifurcation yields the bifurcation of homoclinic loops, which provides a new mechanism for generating disease recurrence, for example, the relapse–remission, viral blip cycles in HIV infection. Last, we present a novel method for the derivation of the normal forms of codimension two and three BT bifurcations. The method is based on the simplest normal form theory from Yu’s previous works.

  相似文献   

12.
This paper discuss the cusp bifurcation of codimension 2 (i.e. Bogdanov-Takens bifurcation) in a Leslie~Gower predator-prey model with prey harvesting, which was not revealed by Zhu and Lan [Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete and Continuous Dynamical Systems Series B. 14(1) (2010), 289-306]. It is shown that there are different parameter values for which the model has a limit cycle or a homoclinic loop.  相似文献   

13.
In this paper, a reaction‐diffusion predator–prey system that incorporates the Holling‐type II and a modified Leslie‐Gower functional responses is considered. For ODE, the local stability of the positive equilibrium is investigated and the specific conditions are obtained. For partial differential equation, we consider the dissipation and persistence of solutions, the Turing instability of the equilibrium solutions, and the Hopf bifurcation. By calculating the normal form, we derive the formulae, which can determine the direction and the stability of Hopf bifurcation according to the original parameters of the system. We also use some numerical simulations to illustrate our theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Assuming that the prey refuge is proportional to the prey density if its population size is below a critical threshold, or constant if its size is above the threshold, this paper proposes, and qualitatively analyzes, a Leslie–Gower predator–prey model assuming alternative feeding and harvesting in predators, and a Holling II function as the predator functional response. From the results of the mathematical analysis to the predator–prey models with proportional or constant prey refuge, the proposed model retains the same bifurcation cases obtained for each model analyzed. However, appropriate alterations of the parameters representing the critical threshold of prey population size and harvest in predators allows the formation of at least one limit cycle, stable or unstable, that lives in both vector fields of the proposed model.  相似文献   

15.
Functional response of the Holling type II is incorporated into a predator–prey model with predators using hawk‐dove tactics to consider combination effects of nonlinear functional response and individual tactics. By mathematical analysis, it is shown that the model undergoes a sequence of bifurcations including saddle‐node bifurcation, supercritical Hopf bifurcation and homoclinic bifurcation. New phenomena are found that include the bistable coexistence of prey and predators in the form of a stable limit cycle and a stable positive equilibrium, the bistable coexistence of prey and predators in a large stable limit cycle that encloses three positive equilibria and a stable positive equilibrium within the cycle, and the bistable coexistence of two stable limit cycles.  相似文献   

16.
In this paper we analyze a delay-induced predator–prey–parasite model with prey harvesting, where the predator–prey interaction is represented by Leslie–Gower type model with type II functional response. Infection is assumed to spread horizontally from one infected prey to another susceptible prey following mass action law. Spreading of disease is not instantaneous but mediated by a time lag to take into account the time required for incubation process. Both the susceptible and infected preys are subjected to linear harvesting. The analysis is accomplished in two phases. First we analyze the delay-induced predator–prey–parasite system in absence of harvesting and proved the local & global dynamics of different (six) equilibrium points. It is proved that the delay has no influence on the stability of different equilibrium points except the interior one. Delay may cause instability in an otherwise stable interior equilibrium point of the system and larger delay may even produce chaos if the infection rate is also high. In the second phase, we explored the dynamics of the delay-induced harvested system. It is shown that harvesting of prey population can suppress the abrupt fluctuations in the population densities and can stabilize the system when it exceeds some threshold value.  相似文献   

17.
In this paper, we consider a Leslie–Gower predator–prey model with Holling type II functional response and density-dependent diffusion under zero Dirichlet boundary condition. Using degree theory, bifurcation theory, energy estimates and asymptotical behavior analysis, the existence and multiplicity of positive steady state solutions were shown under certain conditions on the parameters.  相似文献   

18.
We prove that the Volterra‐Gause system of predator‐prey type exhibits 2 kinds of zero‐Hopf bifurcations for convenient values of their parameters. In the first, 1 periodic solution bifurcates from a zero‐Hopf equilibrium, and in the second, 4 periodic solutions bifurcate from another zero‐Hopf equilibrium. This study is done using the averaging theory of second order.  相似文献   

19.
This paper is concerned with a cross‐diffusion system arising in a Leslie predator–prey population model in a bounded domain with no flux boundary condition. We investigate sufficient condition for the existence and the non‐existence of non‐constant positive solution. We obtain that if natural diffusion coefficient of predator is large enough and cross‐diffusion coefficients are fixed, then under some conditions there exists non‐constant positive solution. Furthermore, we show that if natural diffusion coefficients of predator and prey are both large enough, and cross‐diffusion coefficients are small enough, then there exists no non‐constant positive solution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we investigate the spatiotemporal dynamics of a two-dimensional predator–prey model, which is based on a modified version of the Leslie–Gower scheme incorporating a prey refuge. We establish a Lyapunov function to prove the global stability of the equilibria with diffusion and determine the Turing space in the spatial domain. Furthermore, we perform a series of numerical simulations and find that the model dynamics exhibits complex Turing pattern replication: stripes, cold/hot spots-stripes coexistence and cold/hot spots patterns. The results indicate that the effect of the prey refuge for pattern formation is tremendous. This may enrich the dynamics of the effect of refuge on the predator-prey systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号