首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented. The text was submitted by the authors in English.  相似文献   

2.
Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model.  相似文献   

3.
基于多相组重建的航空图像超分辨率算法   总被引:1,自引:0,他引:1       下载免费PDF全文
何林阳  刘晶红  李刚 《物理学报》2015,64(11):114208-114208
为提高航空图像的空间分辨率, 提出一种基于多相组重建的超分辨率算法. 融合图像间的互补信息, 将多帧低分辨率图像作为图像基, 参考帧分解为多相组, 利用差异采样特性构建图像基与参考帧之间的的多相组线性关系重建得到高分辨率图像的多项组, 经图像多相分解逆变换获得融合的高分辨率图像. 根据该融合图像的局部内容和结构信息自适应调整控制核核函数, 应用改进的控制核回归算法去除图像模糊和噪声得到清晰的超分辨率图像. 与传统算法相比, 该算法无需图像配准和迭代过程, 计算效率极大地提高. 实验结果表明, 本文算法能够有效提高航空图像的空间分辨率, 在定量评价指标和主观视觉效果方面都有显著提高.  相似文献   

4.
丁海勇  卞正富 《光子学报》2009,38(12):3322-3327
基于Powell优化算法和图像的金字塔分解,提出了一个新的亚像元运动参数估计方法.用参考图像和待配准图像构造的非线性最小二乘公式作为Powell算法的目标函数,并且以运动参数作为变量.由细到粗的多分辨率分解为准确的亚像元参数估计提供了基础.数值实验结果表明,该算法可以用于准确的稳健的亚像元参数估计,其不足之处在于运行时间比较长.  相似文献   

5.
图像匹配技术广泛应用于各种图像处理任务,如图像拼接、机器视觉等。通常匹配算法的精确度只能达到像素级别,但在很多图像处理任务如超分辨率重建中需要亚像素精度的图像配准。提出了一种基于相位相关的亚像素图像配准算法。根据两幅离散数字图像的相位相关矩阵中的最大值以及其附近若干点可以拟合估计出实际的峰值位置,进而实现两幅图像的亚像素运动估计。提出的算法针对热像仪采集的红外图像进行匹配实验,实验结果表明该算法精度相比通常的亚像素匹配算法较高,且具有更好的实用性。  相似文献   

6.
In the problem of blind image deconvolution, estimation of blurring kernel is the first and foremost important step. Quality of restored image highly depends upon the accuracy of this estimation. In this paper we propose a modified cepstrum domain approach combined with bit-plane slicing method to estimate uniform motion blur parameters, which improves the accuracy without any manual intervention. A single motion blurred image under spatial invariance condition is considered. It is noted that the fourth bit plane of the modified cepstrum carries an important cue for estimating the blur direction. With the exploration of this bit plane no other post processing is required to estimate blur direction. The experimental evaluation is carried out on both real-blurred photographs and synthetically blurred standard test images such as Berkeley segmentation dataset and USC-SIPI texture image database. The experimental results show that the proposed method is capable of estimating blur parameters more accurately than the existing methods.  相似文献   

7.
This paper focuses on motion tracking in echocardiographic ultrasound images. The difficulty of this task is related to the fact that echographic image formation induces decorrelation between the underlying motion of tissue and the observed speckle motion. Since Meunier’s seminal work, this phenomenon has been investigated in many simulation studies as part of speckle tracking or optical flow-based motion estimation techniques. Most of these studies modeled image formation using a linear convolution approach, where the system point-spread function (PSF) was spatially invariant and the probe geometry was linear. While these assumptions are valid over a small spatial area, they constitute an oversimplification when a complete image is considered. Indeed, echocardiographic acquisition geometry relies on sectorial probes and the system PSF is not perfectly invariant, even if dynamic focusing is performed.This study investigated the influence of sectorial geometry and spatially varying PSF on speckle tracking. This was done by simulating a typical 64 elements, cardiac probe operating at 3.5 MHz frequency, using the simulation software Field II. This simulation first allowed quantification of the decorrelation induced by the system between two images when simple motion such as translation or incompressible deformation was applied. We then quantified the influence of decorrelation on speckle tracking accuracy using a conventional block matching (BM) algorithm and a bilinear deformable block matching (BDBM) algorithm. In echocardiography, motion estimation is usually performed on reconstructed images where the initial sectorial (i.e., polar) data are interpolated on a cartesian grid. We therefore studied the influence of sectorial acquisition geometry, by performing block matching on cartesian and polar data.Simulation results show that decorrelation is spatially variant and depends on the position of the region where motion takes place relative to the probe. Previous studies did not consider translation in their experiments, since their simulation model (spatially invariant PSF and linear probe) yields by definition no decorrelation. On the opposite, our realistic simulation settings (i.e., sectorial probe and realistic beamforming) show that translation yields decorrelation, particularly when translation is large (above 6 mm) and when the moving regions is located close to the probe (distance to probe less than 50 mm).The tracking accuracy study shows that tracking errors are larger for the usual cartesian data, whatever the estimation algorithm, indicating that speckle tracking is more reliable when based on the unconverted polar data: for axial translations in the range 0-10 mm, the maximum error associated to conventional block matching (BM) is 4.2 mm when using cartesian data and 1.8 mm for polar data. The corresponding errors are 1.8 mm (cartesian data) and 0.4 mm (polar data) for an applied deformation in the range 0-10%. We also show that accuracy is improved by using the bilinear deformable block matching (BDBM) algorithm. For translation, the maximum error associated to the bilinear deformable block matching is indeed 3.6 mm (cartesian data) and 1.2 mm (polar data). Regarding deformation, the error is 0.7 mm (cartesian data) and 0.3 mm (polar data). These figures also indicates that the larger improvement brought by the bilinear deformable block matching over standard block matching logically takes place when deformation on cartesian data is considered (the error drops from 1.8 to 0.7 mm is this case).We give a preliminary evaluation of this framework on a cardiac sequence acquired with a Toshiba Powervision 6000 imaging system using a probe operating at 3.25 MHz. As ground truth reference motion is not available in this case, motion estimation performance was evaluated by comparing a reference image (i.e., the first image of the sequence) and the subsequent images after motion compensation has been applied. The comparison was quantified by computing the normalized correlation between the reference and the motion-compensated images. The obtained results are consistent with the simulation data: correlation is smaller for cartesian data, whatever the estimation algorithm. The correlation associated to the conventional block matching (BM) is in the range 0.45-0.02 when using cartesian data and in the range 0.65-0.2 for polar data. The corresponding correlation ranges for the bilinear deformable block matching are 0.98-0.2 and 0.98-0.55. In the same way these figures indicate that the bilinear deformable block matching yield a larger improvement when cartesian data are considered (correlation range increases from 0.45-0.02 to 0.98-0.2 in this case).  相似文献   

8.
运动与离焦模糊图像的复原   总被引:4,自引:0,他引:4  
在运动和离焦所引起的图像模糊的情况中,本文提出了一种新的基于霍夫变换区分离焦模糊和运动模糊两类模糊的方法.该方法通过比较霍夫变换矩阵中的亮点数来区分两类模糊,不仅正确率达到100%,而且抗干扰性能好;其次通过对运动模糊图像做两次方向微分,估计其模糊方向,提高了模糊方向的估计准确度;最后利用改进的Prewiit算子和费米函数计算模糊图像的刃边函数,进而得到图像的调制传递函数,再利用维纳滤波复原图像.实验结果表明:本文算法不仅具有有效性和强抗噪音能力,而且对图像的信噪比要求可以低到20 dB;与传统算法相比,提高了图像的复原质量.  相似文献   

9.
一种水下未知固定深度的被动目标运动分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对水下三维情形的被动目标运动分析(TMA)进行了探讨。文中使用的数据量测是关于目标的方位角、俯仰角和多卜勒频移等,且运动目标与观测平台相对深度固定未知。这是水下一种常见的三维情况。伪线性估计和最大似然估计方法的处理结果表明:由于增大了观测的信息量,运动参数的估计方差收敛性较好,估计性能得到有效改善。伪线性方法的方差估计曲线向CBR界逼近。最后该方法也适合于分析已知固定深度的三维情形与同处一个水平面的二维情形等特殊情况。  相似文献   

10.
This paper introduces a novel approach to eliminate stripe noise in infrared images. The differences between bias voltages in column readout circuit of uncooled infrared sensors result in strong stripe noise which changes slowly in time. The problem can be solved by estimating the bias of each column of infrared images and correcting infrared images with the estimated biases. The bias estimation is translated into an energy optimization problem in the paper. The optimization aims to minimize difference between neighboring columns of images. Our approach can be processed on a single image, or in a recursive way in order to significantly reduce the computation in one frame time. Our approach is compared to the state-of-the-art the stripe noise removal method using realistic infrared images, and the experimental results show the effectiveness and efficiencies of our proposed approach.  相似文献   

11.
In this paper, we propose a dual image approach to correcting intensity inhomogeneities for MR images acquired using surface coils. Previous methods are usually not satisfactory due to restricted application domains, considerable human interactions, or some undesirable artifacts. The proposed algorithm provides nice correction results for a variety of surface-coil MR images. It is accomplished by using an additional body-coil MR image of a smaller size captured at the same position as that of the surface-coil image to facilitate the estimation of the bias field function. The correction algorithm consists of aligning the surface-coil image with the body-coil image and fitting a spline surface from a sparse set of data points for the associated bias field function. Experiments on some real images show satisfactory correction results by using the proposed algorithm.  相似文献   

12.
Shear strain estimation and lesion mobility assessment in elastography   总被引:5,自引:0,他引:5  
Konofagou EE  Harrigan T  Ophir J 《Ultrasonics》2000,38(1-8):400-404
Elastography typically measures and images the normal strain component along the insonification/compression axis, i.e., in the axial direction. We have recently shown that, by using interpolation and cross-correlation methods of transversely displaced RF echo segments, it is possible to measure and image displacement and strain transversely to the beam with good precision. This enables the estimation and imaging of all three principal normal strain components. Generally, motion in a direction other than that in which strain is estimated may result in decorrelation noise, severely corrupting the estimates. Therefore, a correction method is applied to correct the displacement and strain estimates for decorrelating motion. In this paper, we show how corrected displacement estimates can also be used to estimate and image the shear strain components. This may allow us to identify regions of decorrelation noise in the normal strain measurement that are due to shear strain. Shear strain estimates provide supplementary information, which can characterize different tissue elements based on their mobility. In the case of breast lesions, low mobility is related to malignancy. Following an in vivo case, we show with 2D simulations how assessment of tumor mobility can be achieved with shear strain estimation.  相似文献   

13.
The assembly of particles is one of the many methods for the fabrication of organized structures in the range of micro- to nanometer sizes. These structures have potential applications in the electronic, optical and biochemical fields. Recently, many papers have reported the patterning of particles using patterned SAM (self-assembly monolayer) films and micro molding methods. We have been developing a new technique to assemble particles using an electrostatic field. This paper describes a new technique to fabricate two-dimensional microstructures assembled from 100 nm particles. Spherical silica of 900 nm diameter and aluminum of 100 nm diameter were used as the model particles. An electrostatic image was formed on an insulating substrate by drawing a focused electron beam at 10 keV. Both types of particles were deposited on the electrostatic images. In this process, the dielectrophoretic (DEP) force plays an important role in depositing particles on the electrostatic images. The DEP forces for particles in a suspension were calculated using numerical analysis. The result showed that the DEP force above the electrified region on the substrate is larger than disturbing forces, such as Brownian motion.  相似文献   

14.
This paper introduces a new scene-based technique to correct the fixed-pattern noise (FPN) in array sensors. This method registers a pair of image frames exhibiting small relative scene translation and then the noise pattern can be reconstructed using the constrained least-squares estimation. The key advantage of this technique is that the accurate estimates of the bias nonuniformity can be obtained with only two images, without imposing any assumptions on the structure of the FPN. Besides, the method works on almost static scene, and therefore does not require larger scale global motion and statistical assumptions on the scene irradiance. We test our method on synthetically generated FPN as well as with real infrared data, and experimental results demonstrate the significant reduction in FPN, validating the effectiveness of our approach. Finally, we validate the feasibility and validity of using the proposed method as a first step fostering the success of more sophisticated registration-based time-evolving correction algorithms.  相似文献   

15.
吴锡  周激流  何建新 《光子学报》2014,40(12):1827-1832
本文提出一种采用非局部主成分分析的极大似然估计去噪方法.首先采用非局部主成分分析算法来计算像素邻域间的灰度值和纹理结构相似性,然后通过极大似然估计方法估计最优复原图像.本方法使用非局部主成分分析克服现有局部性去噪方法模糊边界等缺陷,引入极大似然估计方法来改进现有非局部均值的简单加权均值去噪处理,从而提高对图像细节信息的复原能力.最后分别使用本文方法、非局部均值和局部极大似然估计三种去噪方法,在不同噪音大小和不同几何纹理复杂度的图像中进行定性和定量的去噪实验.结果表明,本文方法可在保持图像细节和纹理信息的情况下有效去噪,较之现有方法效果更好.  相似文献   

16.
图像超分辨率重建技术与方法综述   总被引:2,自引:0,他引:2  
图像超分辨率重建可以利用多幅具有互补信息的低分辨率图像重构一幅高分辨率的图像,该技术已经成为图像处理领域的研究热点。介绍了图像超分辨率重建的基本原理,阐述了超分辨率重建技术与其它相关图像处理技术的关系;系统地总结了图像超分辨率重建中常用的运动估计方法、运算方式和质量评价方法。  相似文献   

17.
The paper presents and evaluates a speckle detection method for B-scan images. This is a fully automatic method and does not require information about the sensor parameters, which is often missing in retrospective studies.The characterization and posterior detection of speckle noise in ultrasound (US) has been regarded as an important research topic in US imaging, for improving signal-to-noise ratio by removing speckle noise and for exploiting speckle correlation information. Most of the existing methods require either manual intervention, the need to know sensor parameters or are based on statistical models which often do not generalize well to B-scans of different imaging areas. The proposed method aims to overcome those limitations.The main novelty of this work is to show that speckle detection can be improved based on finding optimally discriminant low order speckle statistics. In addition, and in contrast with other approaches the presented method is fully automatic and can be efficiently implemented to B-scan images.The method detects speckle patches using an ellipsoid discriminant function which classifies patches based on features extracted from optimally discriminant low order moments of the uncompressed intensity B-scan information. In addition, if the uncompressed signal is not available, we propose and evaluate a method for the estimation of this factor.The computation of low order moments using an optimality criteria, the decompression factor estimation and other key aspects of the method are quantitatively evaluated using both simulated and real (phantom and in vivo) data. Speckle detection results are obtained using again phantom and in vivo studies which show the validity of our approach. In addition, speckle probability images (SPI) are presented which provide valuable information about the distribution of speckle and non-speckle areas in an image.The presented evaluation and results show the effectiveness of our approach. In particular, the need for using discriminant analysis to determine the optimal discriminant power of the statistical moments and that this optimal value strongly depends on the characteristics and imaged tissues in the B-scan data.  相似文献   

18.
Direct measurement of forces is not practical in many real-life applications since the interfacial conditions may change. Thus indirect force estimation methods must be developed though they pose special difficulty for nonlinear mounts or isolators. The hydraulic engine mount is examined as an illustrative example in this article since it exhibits spectrally varying and amplitude-sensitive parameters. First, we propose linear time-invariant, nonlinear and quasi-linear fluid and mechanical system models. Second, models are utilized to predict the transmitted force time history under sinusoidal excitation conditions given measured (or calculated) motion and/or internal pressure time histories. Experimental data from the non-resonant dynamic stiffness test is investigated in both time and frequency domains. In particular, the super-harmonic contents in fluid chamber pressure and force time histories are investigated using both measurements and mathematical models. This paper examines several alternate indirect schemes for estimating dynamic forces and highlights their strengths. The quasi-linear model with effective system parameters, say in terms of force to pressure or force to motion transfer functions, is found to correlate well with measured dynamic forces though linear and nonlinear models could be employed as well.  相似文献   

19.
Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water–fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon.  相似文献   

20.
当合成孔径声呐测绘带较大时,运动误差的空变效应严重,经典的相位中心重叠算法难以适用。为此,提出了一种适用于大测绘带合成孔径声呐的运动补偿方法。首先使用混合调制的拉格朗日时延估计算法对前后两帧回波的时延进行估计,之后使用线性回归方法拟合出运动误差,最后利用运动误差的估计值对回波进行逐点精确补偿。仿真数据的结果表明,该算法能够获得比相位中心重叠算法更好的运动估计结果,运动补偿后成像分辨率接近理论分辨率。使用该算法分别对高、低频合成孔径声呐的湖试数据进行了处理,水下地貌和小目标的成像质量均有明显提高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号