首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite   transition period ττ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the sound wave is not conserved but increases always   for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods ττ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans.  相似文献   

2.
A new experimental method has been devised that directly determines the group velocities of surface acoustic waves. A point source and a point detector are employed to measure the ultrasonic transmission across a solid surface as a continuous function of the propagation direction. Results for single pulses give the times-of-flight for both Rayleigh surface waves (RSW's) and pseudo-surface-waves (PSW's). Calculations and measurements of the group velocities of the surface waves on silicon show some unanticipated behavior: fluid loading qualitiatively changes the group velocity curves for both RSW and PSW. In particular, the RSW branch gains an additional component which we denote here as an induced Rayleigh wave (IRW). If a wave train is employed in the experiment, the analog of phonon focusing is observed for the ultrasonic waves, modified by internal-diffraction effects. Systematic measurements of the wave intensities on silicon as a function of propagation distance are consistent with expected acoustic losses into the surrounding water: the attenuation length of a wave depends on the mode and frequency. A survey of surface-wave images on other crystals is included in this study.  相似文献   

3.
The propagation of a monochromatic light wave in a medium moving at a spatially nonuniform velocity is described in terms of geometrical optics. An eikonal equation is derived to the first order in the parameter v/c (where v is the velocity of the medium and c is the velocity of light). It is shown that the nonuniformity of the motion of the medium leads to a shift and bending of the light rays and to a rotation of the plane of polarization. The estimates obtained demonstrate the feasibility of observing the revealed effects in real experiments. These effects can be used to analyze the distributions of the velocity of motion of fluids and, possibly, gases.  相似文献   

4.
(11\(\bar 2\)0)ZnO film/R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity (v p), electromechanical coupling coefficient (k 2), temperature coefficient of frequency (TCF) and reflection coefficient (r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\(\bar 2\)0)ZnO film/R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\(\bar 2\)0)ZnO film/R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\(\bar 2\)0)ZnO film/R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.  相似文献   

5.
6.
In this paper, we investigate tunable control of the group velocity of a weak probe field propagating through an f-deformed Bose-Einstein condensate of Λ-type three-level atoms beyond the rotating wave approximation. For this purpose, we use an f-deformed generalization of an effective two-level quantum model of the three-level Λ-configuration without the rotating wave approximation in which the Gardiner’s phonon operators for Bose-Einstein condensate are deformed by an operator-valued function, , of the particle-number operator . We consider the collisions between the atoms as a special kind of f-deformation where the collision rate κ is regarded as the deformation parameter. We demonstrate the enhanced effect of subluminal and superluminal propagation based on electromagnetically induced transparency and electromagnetically induced absorption, respectively. In particular, we find that (i) the absorptive and dispersive properties of the deformed condensate can be controlled effectively in the absence of the rotating wave approximation by changing the deformation parameter κ, the total number of atoms and the counter-rotating terms parameter λ, (ii) by increasing the values of λ, κ and η = 1/N, the group velocity of the probe pulse changes, from subluminal to superluminal and (iii) beyond the rotating wave approximation, the subluminal and superluminal behaviors of the probe field are enhanced.  相似文献   

7.
韩庆邦  徐杉  谢祖峰  葛蕤  王茜  赵胜永  朱昌平 《物理学报》2013,62(19):194301-194301
基于四种超声悬浮液模型Urick, Urick-Ament, HT, Mcclements分析了Scholte波在两相流体与多孔介质固体界面处的传播特性. 结合各模型的复波数表达式建立含泥沙流体-多孔介质固体界面波特征方程, 分析了Scholte波速与两相流体积含量、粒径等介质属性的关系. 通过仿真实验获得界面波信号, 运用时延估计获得Scholte波速与泥沙含量、粒径的关系, 发现所得的波速与Urick-Ament和HT理论有相对好的一致性. 关键词: Scholte波 两相流体 多孔介质 泥沙含量  相似文献   

8.
The polaron states are studied in crystals with optical phonon dispersion of the type ω2(k) = ω 0 2 + u 2 k 2. The appearance and propagation of a local polarization in such a medium is treated as the evolution of a wave packet having a nonzero group velocity. This approach enables one to construct a consistent theory of moving self-trapped electron. The total energy and the effective mass of a slowly moving polaron are found and are shown to be strongly dependent on the dispersion parameter σ = u0.  相似文献   

9.
Equations describing the interaction of ultrasonic waves with a moving vortex structure are derived. The addition to attenuation and the relative change in the velocity of longitudinal ultrasonic waves due to this interaction are calculated. It is found that when a longitudinal ultrasonic wave propagates along the direction of motion of the vortex structure and the velocity V of the structure is equal to half the velocity of the wave, then anomalous acoustic attenuation occurs and the contribution from the ultrasound-vortex interaction to the velocity of the ultrasonic wave vanishes. It is shown that if the vortex structure moves at a sufficiently high velocity, then (in contrast to the case of the structure at rest) a weakly damping collective mode propagating with velocity 2V arises in the structure. It is this mode that is responsible for anomalous attenuation of longitudinal ultrasonic waves.  相似文献   

10.
The ultrasonic velocity, density and viscosity of binary mixtures of tetrahydrofuran (THF) with methanol and o-cresol were measured at 293, 303 and 313 K over the entire range of composition. Using these experimental data, various thermo-acoustic parameters such as deviation in isentropic compressibility Δκs, excess molar volume , viscosity deviation Δη and excess Gibb’s free energy of activation for viscous flow ΔGE have been calculated and fitted to Redlich-Kister polynomial equation. The deviation/excess parameter were plotted against the mole fraction of THF over the whole composition range. The observed negative and positive values of deviation/excess thermo-acoustic parameters were explained on the basis of the intermolecular interactions present in these mixtures. Since methanol is less acidic than o-cresol, the removal of proton from methanol is less likely than the removal of proton from o-cresol which is more acidic than methanol. Hence the intermolecular interaction in the mixture of THF with o-cresol is found to be stronger than mixture of THF with methanol, which is reflected from the observed positive and negative values of excess thermo-acoustic parameters. Thus it may be concluded that THF + o-cresol mixture exhibits strong intermolecular interaction. However, dispersive forces are responsible for THF + methanol mixture due to weak interaction. Further, Nomoto, Junjie, CFT and Flory’s theory were applied for evaluating the ultrasonic velocity theoretically. The theoretical evaluation of ultrasonic velocity based on molecular models in liquid mixtures has been used to correlate with the experimental findings and to know the thermodynamics of the mixtures. The comparison of theoretical and experimental results provides better understanding about the validity of the various thermodynamic, empirical, semi empirical and statistical theories.  相似文献   

11.
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=pE. The position-velocity uncertainty relation is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation . The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.  相似文献   

12.
The properties of the Earth’s solid crust have been studied on the assumption that this crust has a block structure. According to the rotation model, the motion of such a medium (geomedium) follows the angular momentum conservation law and can be described in the scope of the classical elasticity theory with a symmetric stress tensor. A geomedium motion is characterized by two types of rotation waves with shortand long-range actions. The first type includes slow solitons with velocities of 0 ≤ Vsol ≤ c0, max = 1–10 cm s–1; the second type, fast excitons with V0VexVSVP. The exciton minimal velocity (V0 = 0) depends on the energy of the collective excitation of all seismically active belt blocks proportional to the Earth’s pole vibration frequency (the Chandler vibration frequency). The exciton maximal velocity depends on the velocities of S (VS ≈ 4 km s–1) and/or P (VP ≈ 8 km s–1) seismic (acoustic) waves. According to the rotation model, a geomedium is characterized by the property physically close to the corpuscular–wave interaction between blocks that compose this medium. The possible collective wave motion of geomedium blocks can be responsible for the geomedium rheidity property, i.e., a superplastic volume flow. A superplastic motion of a quantum fluid can be the physical analog of the geomedium rheid motion.  相似文献   

13.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

14.
Shock waves generated by a laser-induced plasma were investigated using a pump-and-probe technique. Both 7-ns and 40-ps laser pulses at 1.06 m were employed to initiate breakdown in water. Two He-Ne laser beams were used as a velocity probe, allowing the accurate measurement of the shock velocity around the plasma. The maximum shock pressure was determined from the measured shock velocities, the jump condition and the equation of state for water. The conservation of the total momentum of the shock front was used to derive expressions for the shock velocity, particle velocity and shock pressure vs. the distance (r) from the center of the plasma. For a shock wave of spherical symmetry, the shock pressure is proportional to 1/r 2. Our work shows that the expanding plasma initially induces a shock wave; the shock wave dissipates rapidly becoming an acoustic wave within 300–500 m.  相似文献   

15.
A model calculation of a two-wire Josephson transmission line with a quasi-transverse electromagnetic wave is performed. The dispersion characteristics of the wave are estimated. The group velocity is shown to be (4.1–2.5)·107 m/s for a temperature of 76–85.9 K, a critical current of 109 A/m2, a dielectric plate thickness of 10 m, and a relative permittivity of 40. The wave attenuation in this temperature range is 2 db/dm at a frequency of 10 GHz. The rough estimates suggest the feasibility of designing microstrip transmission lines based on granular high-temperature superconducting films. These lines will provide delays up to 1 s and picosecond pulse transmission.  相似文献   

16.
A relativistic expression has been obtained for the curvature of trajectory of the wave vector of an electromagnetic wave in a moving optically transparent medium. It has been shown that the curvature of the trajectory and angular deviation of rays appear in a homogeneous isotropic medium if the gradient of the velocity field in the medium is nonzero. The bending of the trajectory in the medium with the velocity gradient is a firstorder effect in the ratio u/c.  相似文献   

17.
We express the effective permittivity tensor for a medium that is, on the average, motionless and nonstationary. It is shown that fast time pulsations of velocity lead to an increase in the average wave field and in the propagation velocity of an electromagnetic wave. Using a computer, we compare the surfaces of the frequency spectra of the strength of the scattered field for the Gaussian and diffusion components of the solenoidal velocity field. Dips are shown to emerge in the frequency spectrum that corresponds to the diffusion correlation function as the velocity pulsation increases.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 9, pp. 1091–1095, September, 1996.  相似文献   

18.
A scenario of self-turbulization and limiting (experimentally observed) laws of accelerated expansion of a free turbulent spherical flame in a preliminarily mixed fuel gas mixture are described. The limiting self-similar law of the growth of a completely turbulized spherical front R ~ 〈?〉1/2 t 3/2 was shown to correspond to the generalized Kolmogorov-Obukhov law for a locally isotropic velocity field in a spherical turbulent medium with an immobile center of gravity at a constant rate of internal heat release per 1 kg of the mixture 〈?〉 (in m2/s3). The asymptotic dependences of the kinematic (space-time) characteristics of the evolution of a turbulent macroelement growing according to the Kolmogorov-Obukhov laws on the Reynolds and Peclet numbers obtained from the visible radius R, the rate of its propagation R′, and laminar viscosity (v) and thermal diffusivity (χ) coefficients of the initial mixture were obtained in the criterional form. It was shown that, irrespective of the direction of cloud growth under study (horizontal impurity diffusion in the atmosphere and ocean or an isotropic spherical flame) and the physical nature and value of internal heat release 〈?〉 in this direction (viscous dissipation of the kinetic energy of turbulent vortices in the first case or energy release in combustion in the second), the kinematic parameters of the growth of turbulent macroformations were described by these generalized laws.  相似文献   

19.
Taking into account the effects of thermal diffusion and optical penetration, as well as the finite width and duration of the laser source, the laser-generated ultrasonic force source at surface vicinity is presented. The full acoustic fields of laser-generated ultrasonic bulk wave are obtained and displayed in transversely isotropic plate. The features of laser-generated ultrasound bulk waves are analyzed. The features of laser-generated ultrasonic bulk wave are in good agreement with the theoretical results (the phase velocity surfaces), demonstrating the validity of this simulation. The numerical results indicate that the features of laser-generated ultrasound waveforms in anisotropic specimen, different from the case in isotropic materials, have a close relation with the propagating plane and propagation direction. This method can provide insight to the generation and propagation of laser-generated ultrasonic bulk wave in transversely isotropic material.  相似文献   

20.
We present an experimental study of the flow dynamics of a lamellar phase sheared in the Couette geometry. High-frequency ultrasonic pulses at 36 MHz are used to measure time-resolved velocity profiles. Oscillations of the viscosity occur in the vicinity of a shear-induced transition between a high-viscosity disordered fluid and a low-viscosity ordered fluid. The phase coexistence shows up as shear bands on the velocity profiles. We show that the dynamics of the rheological data result from two different processes: (i) fluctuations of slip velocities at the two walls and (ii) flow dynamics in the bulk of the lamellar phase. The bulk dynamics are shown to be related to the displacement of the interface between the two differently sheared regions in the gap of the Couette cell. Two different dynamical regimes are investigated under applied shear stress: one of small amplitude oscillations of the viscosity ( %) and one of large oscillations ( %). A phenomenological model is proposed that may account for the observed spatio-temporal dynamics.Received: 2 December 2003, Published online: 9 March 2004PACS: 83.10.Tv Structural and phase changes - 43.58. + z Acoustical measurements and instrumentation - 47.50. + d Non-Newtonian fluid flows  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号