首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The dynamics of solvent and rotational relaxation of Coumarin 480 and Coumarin 490 in glycerol containing bis-2-ethyl hexyl sulfosuccinate sodium salt (AOT) reverse micelles have been investigated with steady-state and time-resolved fluorescence spectroscopy. We observed slower solvent relaxation of glycerol confined in the nanocavity of AOT reverse micelles compared to that in pure glycerol. However, the slowing down in the solvation time on going from neat glycerol to glycerol confined reverse micelles is not comparable to that on going from pure water or acetonitrile to water or acetonitrile confined AOT reverse micellar aggregates. While solvent relaxation times were found to decrease with increasing glycerol content in the reverse micellar pool, rotational relaxation times were found to increase with increase in glycerol content.  相似文献   

2.
Water in carbon nanotubes is surrounded by hydrophobic carbon surfaces and shows anomalous structural and fast transport properties. However, the dynamics of water in hydrophobic nanospaces is only phenomenologically understood. In this study, water dynamics in hydrophobic carbon nanotubes is evaluated based on water relaxation using nuclear magnetic resonance spectroscopy and molecular dynamics simulations. Extremely fast relaxation (0.001 s) of water confined in carbon nanotubes of 1 nm in diameter on average is observed; the relaxation times of water confined in carbon nanotubes with an average diameter of 2 nm (0.40 s) is similar to that of bulk water (0.44 s). The extremely fast relaxation time of water confined in carbon nanotubes with an average diameter of 1 nm is a result of frequent energy transfer between water and carbon surfaces. Water relaxation in carbon nanotubes of average diameter 2 nm is slow because of the limited number of collisions between water molecules. The dynamics of interfacial water can therefore be controlled by varying the size of the hydrophobic nanospace.  相似文献   

3.
Frequency‐dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk‐like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Thermodynamic, structural, and dynamic properties of heavy water (D(2)O) confined in mesoporous silica glass MCM-41 C10, C12, and C14 were investigated by differential scanning calorimetry, neutron diffraction, and neutron spin echo (NSE) measurements, respectively. The DSC data showed that no crystallization of D(2)O confined in C10 occurs in a temperature range between 298 and 180 K, and that crystalline ice is formed at 204 and 221 K for C12 and C14, respectively. For C10, the neutron radial distribution functions of confined D(2)O suggested a structural change in the supercooled state between 223 and 173 K. For C10 sample, it has been found that the tetrahedral-like water structure is partially enhanced in the central part of pores at 173 K. For all the samples, the intermediate scattering functions from the NSE measurements are fitted by the Kohlrausch-Williams-Watts stretched exponential function which implies that confined supercooled D(2)O exhibits a wide distribution of relaxation times. For C10, C12, and C14 samples, between 298 and 240 K, the relaxation times of supercooled D(2)O follow remarkably well the Vogel-Fulcher-Tamman equation; for C10 sample, below 240 K, the relaxation times of nonfreezing D(2)O show an Arrhenius type behavior. From the present experimental results on calorimetric, structural, and dynamic properties, it has been concluded that supercooled D(2)O confined in MCM-41 C10 experiences a transition from high-density to low-density hydrogen-bonded structure at around 229 K.  相似文献   

5.
用粗粒化的分子动力学(MD)模拟方法从分子层次研究了受限于粗糙壁内的聚合物熔体的动力学性质. 结果表明, 对于链长较短的受限聚合物熔体体系, 随着膜厚的增加, 体系内部高分子链的松弛时间逐渐减少; 然而对于链长较长的受限体系, 聚合物链的松弛时间随着膜厚的增加先减少后增加. 推测这种由于链长的变化所引起的动力学性质的差异源自受限熔体内聚合物链聚集状态的改变, 并且通过考察交叠参数对这种改变进行了分析. 结果表明, 在膜厚增加的过程中, 决定受限状态高分子长链松弛机理的因素逐渐从受限效应转变成为链间的缠结效应.  相似文献   

6.
We have investigated the dynamics of water confined in a molecular sieve, with a cylindrical pore diameter of 10 A, by means of quasielastic neutron scattering (QENS). Both the incoherent and coherent intermediate scattering functions I(Q,t) were determined by time-of-flight QENS and the neutron spin-echo technique, respectively. The results show that I(Q,t) is considerably more stretched in time with a slightly larger average relaxation time in the case of coherent scattering. From the Q dependence of I(Q,t) it is clear that the observed dynamics is almost of an ordinary translational nature. A comparison with previous dielectric measurements suggests a possible merging of the alpha and beta relaxations of the confined water at T=185 K, although the alpha relaxation cannot be directly observed at lower temperatures due to the severe confinement. The present results are discussed in relation to previous results for water confined in a Na-vermiculite clay, where the average relaxation time from spin-echo measurements was found to be slower than in the present system (particularly at low temperatures).  相似文献   

7.
The dynamics of propylene glycol (PG) and its oligomers 7-PG and poly-propylene glycol (PPG), with M(w) = 4000 (approximately 70 monomers), confined in a Na-vermiculite clay have been investigated by quasielastic neutron scattering. The liquids are confined to single molecular layers between clay platelets, giving a true two-dimensional liquid. Data from three different spectrometers of different resolutions were Fourier transformed to S(Q,t) and combined to give an extended dynamical time range of 0.3-2000 ps. An attempt was made to distinguish the diffusive motion from the methyl group rotation and a fast local motion of hydrogen in the polymer backbone. The results show that the average relaxation time tau(d) of this diffusive process is, as expected, larger than the relaxation time tau averaged over all dynamical processes observed in the experimental time window. More interesting, it is evident that the severe confinement has a relatively small effect on tau(d) at T = 300 K, this holds particularly for the longest oligomer, PPG. The most significant difference is that the chain-length dependence of tau(d) is weaker for the confined liquids, although the slowing down in bulk PG due to the formation of a three-dimensional network of OH-bonded end groups reduces this difference. The estimated average relaxation time tau at Q = 0.92 Angstroms(-1) for all the observed processes is in excellent agreement with the previously reported dielectric alpha relaxation time in the studied temperature range of 260-380 K. The average relaxation time tau (as well as the dielectric alpha relaxation time) is also almost unaffected by the confinement to a single molecular layer, suggesting that the interaction with the clay surfaces is weak and that the reduced dimensionality has only a weak influence on the time scale of all the dynamical processes observed in this study.  相似文献   

8.
梁尊  张鑫  吕松泰  梁洪涛  杨洋 《化学学报》2021,79(1):108-118
冰-水界面动力学性质在冰形核、生长、表界面熔化中扮演核心角色, 长期以来一直被广泛关注. 然而, 受限水体系中冰-水界面的动力学性质却鲜有报道. 本工作利用平衡态分子动力学模拟方法和受限固-液两相平衡模拟技术, 对两种水模型(恒定偶极矩、可极化)描述的单分子层受限冰-水两相平衡体系中的一维固-液界线开展研究. 通过对一维受限冰-水界线的追踪, 计算了其热涨落波动的振幅与时间自关联函数色散谱, 进而计算一系列固-液界线动力学性质. 冰-水界线波动在短波长区域复合了快、慢两种不同时间尺度的弛豫过程, 在长波长区域则由慢弛豫过程主导. 相比块体冰-水界面体系, 以Rayleigh波为主的高频微观物理过程更多地参与了一维冰-水界线的动力学弛豫. 我们发现冰-水界线波动弛豫特征衰减时间的波矢依赖关系符合现有固-液界面动力学理论, 但一维界线弛豫的特征衰减时间比二维界面体系低了一个数量级左右. 计算了两种水模型体系冰-水界线的动力学系数, 并与块体冰-水界面比较, 发现受限冰-水(固-液)界线动力学系数远高于块体冰-水界面体系. 我们推测水分子转动自由度在受限腔中被强烈压制可能是导致受限体系超快冰-水(固-液)相变速率的主要原因. 本工作将在受限水体系超快相变(储能、传感)器件的设计工作中提供一定的理论指导意义.  相似文献   

9.
The molecular dynamics of oligomeric poly(propylene glycol) (PPG) liquids (MW=1000, 2000, and 4000 g/mol) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy. The alpha-relaxation and the normal mode relaxation processes were studied for all samples in bulk and confinement. The most prominent experimental observation was that for the normal mode process: the relaxation rate in the clay is drastically shifted to lower frequencies compared to that of the bulk material. This slowing down is probably caused by the strongly reduced number of accessible chain conformations in two dimensions. Also the temperature dependence of the relaxation time for the normal mode process is strongly affected by the confinement. In contrast, for the alpha-relaxation of the confined polymers we observed only a slight increase of the relaxation rate at high temperatures compared to the corresponding bulk samples, and a decrease of its relaxation strength relative to the beta relaxation. Thus, the glass transition is unaffected by the 2D confinement, suggesting that the underlying phenomena responsible for the glass transition is the same as in bulk. Moreover, in the clay the intensity of the normal mode is stronger than that of the alpha-process, in contrast to the bulk samples where the opposite behavior is observed.  相似文献   

10.
We used differential scanning calorimetry, neutron scattering, and proton NMR to investigate the phase behavior, the structure, and the dynamics of benzene confined in a series of cylindrical mesoporous materials MCM-41 and SBA-15 with pore diameters, d, between 2.4 and 14 nm. With this multitechnique approach, it was possible to determine the structure and, for the first time to our knowledge, the density of confined benzene as a function of temperature and pore size. Under standard cooling rates, benzene partially crystallizes in SBA-15 matrixes (4.7 相似文献   

11.
1H spin−lattice nuclear magnetic resonance relaxation experiments were performed for five kinds of dermal fillers based on hyaluronic acid. The relaxation data were collected over a broad frequency range between 4 kHz and 40 MHz, at body temperature. Thanks to the frequency range encompassing four orders of magnitude, the dynamics of water confined in the polymeric matrix was revealed. It is demonstrated that translation diffusion of the confined water molecules exhibits a two-dimensional character and the diffusion process is slower than diffusion in bulk water by 3–4 orders of magnitude. As far as rotational dynamics of the confined water is concerned, it is shown that in all cases there is a water pool characterized by a rotational correlation time of about 4×10−9 s. In some of the dermal fillers a fraction of the confined water (about 10 %) forms a pool that exhibits considerably slower (by an order of magnitude) rotational dynamics. In addition, the water binding capacity of the dermal fillers was quantitatively compared.  相似文献   

12.
We present the first results of the nuclear magnetic relaxation dispersion (NMRD) of the confined proton-bearing cation (BMI) and fluorine-bearing anion (TFSI) pair of ionic liquids (Li+-ionogels) confined within a silica-like mesoporous matrices designed for lithium batteries. These results are in favour of a very-correlated dynamical motion of the anion–cation pair within the solid and disordered silica matrix.  相似文献   

13.
The density of states for bulk and confined fluids have been modeled using a recently proposed gamma distribution (Krishnan, S. H.; Ayappa, K. G. J. Chem. Phys. 2004, 121, 3197). The gamma distribution results in a closed form analytical expression for the velocity autocorrelation function and the relaxation time of the fluid. The two parameters of the gamma distribution are related analytically to the second and fourth frequency moments of the fluid using short time expansions. The predictions by the proposed gamma model are compared with the velocity autocorrelation functions obtained using the theory of instantaneous normal modes (INMs) and from molecular dynamics simulations. The model is applied to a bulk soft sphere liquid and fluids confined in a spherical cavity and slit-shaped pores. The gamma model is able to capture the resulting changes in relaxation time due to changes in density and temperature extremely well for both the bulk liquid and confined inhomogeneous fluid situations. In all cases, the predictions by the gamma model are superior to those obtained from the INM theory. In the case of the fluid confined in a slit pore, the loadings were obtained from a grand canonical Monte Carlo simulation where the pore is equilibrated with a bulk fluid. This is similar to a confinement situation in a surface force apparatus. The predicted relaxation times vs pore widths from the gamma model are seen to accurately capture the oscillations due to formation and disruption of layers within the slit pore.  相似文献   

14.
Stretching and relaxation of a single DNA molecule tethered in a specially designed thin slit were studied using Monte Carlo simulation combined with bond fluctuation method. It was found that the extension and relaxation of the single DNA molecule are greatly affected by the confined environment. If the extent of the confined environment is increased by decreasing the distance between the two planar surfaces of the slit, the extension of the single DNA molecule increases, due to the screening of the hydrodynamic interaction of DNA segments by the planar surfaces of the slit. The relaxation of the single DNA molecule in different confined environments verifies this assumption completely. The correlation between the end-to-end separation and flow velocity obtained by Monte Carlo simulation is in good agreement with either the experimental results or theoretical consideration reported previously.  相似文献   

15.
We report a comparative neutron scattering study of the molecular mobility and nonexponential relaxation of three structurally similar glass-forming liquids, isopropanol, propylene glycol, and glycerol, both in bulk and confined in porous Vycor glass. Confinement reduces molecular mobility in all three liquids, and suppresses crystallization in isopropanol. High-resolution quasielastic neutron scattering spectra were fit to Fourier transformed Kohlrausch functions exp[-(t∕τ)(β)], describing the α-relaxation processes in these liquids. The stretching parameter β is roughly constant with wavevector Q and over the temperature range explored in bulk glycerol and propylene glycol, but varies both with Q and temperature in confinement. Average relaxation times <τ(Q)> are longer at lower temperatures and in confinement. They obey a power law <τ(Q)> ∝ Q(-γ), where the exponent γ is modified by confinement. Comparison of the bulk and confined liquids lends support to the idea that structural and∕or dynamical heterogeneity underlies the nonexponential relaxation of glass formers, as widely hypothesized in the literature.  相似文献   

16.
The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.  相似文献   

17.
In this work, the structure development in immiscible polymer blends in confined geometries is systematically investigated. Poly(dimethylsiloxane)/poly(isobutylene) blends with a droplet-matrix structure are subjected to simple shear flows. The confined environment is created by using a Linkam shearing cell in which the gap is systematically decreased to investigate the transition from "bulk" behavior toward "confined" behavior. Small-angle light scattering experiments in a confinement, which have not yet been reported in the literature, and also microscopy are used to observe the morphology development during steady-state shearing and relaxation. These experiments indicate that the size and relaxation of single droplets in a confined environment are still governed by the relations that describe the structure development in bulk situations. Yet, depending on the applied shear rates and blend concentrations, the droplets organize in superstructures such as pearl necklaces or extended superstrings in a single layer between the plates. These structures are stable under flow. To observe a single layer, a critical ratio of droplet size to gap spacing is required, but this ratio is clearly below the one already reported in the literature.  相似文献   

18.
We report molecular dynamics simulation results for Stockmayer fluids confined to narrow slitlike pores with structureless, nonconducting walls. The translational and rotational dynamics of the dipolar particles have been investigated by calculating autocorrelation functions, diffusion coefficients, and relaxation times for various pore widths (five or less particle diameters) and directions parallel and perpendicular to the walls. The dynamic properties of the confined systems are compared to bulk properties, where corresponding bulk and pore states at the same temperature and chemical potential are determined in parallel grand canonical Monte Carlo simulations. We find that the dynamic behavior inside the pore depends on the distance from the walls and can be strongly anisotropic even in globally isotropic systems. This concerns especially the particles in the surface layers close to the walls, where the single particle and collective dipolar relaxation resemble that of true two-dimensional dipolar fluids with different in-plane and out-of-plane relaxations. On the other hand, bulklike relaxation is observed in the pore center of sufficiently wide pores.  相似文献   

19.
The rotational molecular dynamics of water confined to nanoporous molecular sieves of a regular hexagonal (SBA-15) and of a foamlike pore structure was studied by dielectric spectroscopy in the frequency range from 10(-2) to 10(9) Hz and in a broad temperature interval. Two relaxation processes were observed: the process at lower frequencies is related to water molecules forming a layer, which is strongly adsorbed at the pore surface, whereas the relaxation process at higher frequencies is assigned to fluctuations of water molecules situated close to the center of the pore. The relaxation times of the low-frequency process for both materials and of the high-frequency process for the SBA-15 material have an unusual saddlelike temperature dependence, reported here for the first time. To describe this temperature dependence, a model developed for water confined to nanoporous glasses by Ryabov et al. [J. Phys. Chem. B 2001, 105, 1845] was applied, which considers two competing effects. The characteristic features of these two competing processes were compared with those reported for other porous systems.  相似文献   

20.
We propose a model for the short-time dynamics of fluids confined in slit-shaped pores. The model has been developed from the observation that the real lobe of the instantaneous normal mode density of states (INM DOS) closely follows a gamma distribution. By proposing that the density of states of the confined fluid can be represented by a gamma distribution, the resulting velocity autocorrelation function (VACF) is constructed such that it is accurate upto the fourth frequency moment. The proposed model results in an analytical expression for the VACF and relaxation times. The VACFs obtained from the model have been compared with the VACFs obtained from molecular dynamic simulations and INM analysis for fluids confined in slit-shaped pores over a wide range of confinement and temperatures. The model is seen to capture the short-time behavior of the VACF extremely accurately and in this region is superior to the predictions of the VACF obtained from the real lobe of the INM DOS. Although the model predicts a zero self-diffusivity, the predicted relaxation times are in better agreement with the molecular dynamics results when compared with those obtained from the INM theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号