首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α-Thymidine (4) was synthesized from thymidine (1) in 3 steps in 36% overall yield without using chro-matography and with the possibility of increasing the yield to 85% by reusing the remaining α,β-mixture. 1-(2-Deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranosyl)thymine (3) was further converted to 1-(2-deoxy-α-D-erythro-pentofuranosyl)-5-methylcytosine (5) .  相似文献   

2.
3.
6-Amino-1-(2-deoxy-β-D-erthro-pentofuranosyl)pyrazolo[4,3-c]pyridin-4(5H)-one ( 5 ), as well as 2-(β-D-ribofuranosyl)- and 2-(2-deoxy-β-D-ribofuranosyl)- derivatives of 6-aminopyrazolo[4,3-c]pyridin-4(5H)-one ( 18 and 22 , respectively) have been synthesized by a base-catalyzed ring closure of pyrazole nucleoside precursors. Glycosylation of the sodium salt of methyl 3(5)-cyanomethylpyrazole-4-carboxylate ( 6 ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 8 ) provided the corresponding N-1 and N-2 glycosyl derivatives ( 9 and 10 , respectively). Debenzoylation of 9 and 10 with sodium methoxide gave deprotected nucleosides 14 and 16 , respectively. Further ammonolysis of 14 and 16 afforded 5(or 3)-cyanomethyl-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazole-4-carboxamide ( 15 and 17 , respectively). Ring closure of 15 and 17 in the presence of sodium carbonate gave 5 and 22 , respectively. By contrast, glycosylation of the sodium salt of 6 with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 11 ) or the persilylated 6 with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose gave mainly the N-2 glycosylated derivative 13 , which on ammonolysis and ring closure furnished 18 . Phosphorylation of 18 gave 6-amino-2-β-D-ribofuranosylpyrazolo[4,3-c]pyridin-4(5H)-one 5′-phosphate ( 19 ). The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1H nmr and uv spectral characteristics and by single-crystal X-ray analysis of 16 .  相似文献   

4.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

5.
A stereospecific high-yield glycosylation of preformed fully aromatic pyrroles has been accomplished for the first time. Reaction of the sodium salt of pyrrole-2-carbonitrile ( 1a ) and pyrrole-2,4-dicarbonitrile ( 1b ) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 2 ) gave exclusively the corresponding blocked nucleosides with β-anomeric configuration 3a and 3b , which on deprotection gave 1-(2-deoxy-β-D-erythro-pentofuranosyl) derivatives of 1a ( 3c ) and 1b ( 3d ). Functional group transformation of 3c and 3d provided a number of 2-monosubstituted 4a-c and 2,4-disubstituted 4d-f derivatives of 1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrrole. Similar glycosylation of the sodium salt of 1a and 1b with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 5 ) and further functional group transformation of the intermediate blocked nucleosides 6a and 6b provided 1-β-D-arabinofuranosyl derivatives of pyrrole-2-carboxamide ( 7b ) and pyrrole-2,4-dicarboxamide ( 7d ). The synthetic utility of this glycosylation procedure for the preparation of 1-β-D-ribofuranosylpyrrole-2-carbonitrile ( 12 ) has also been demonstrated by reacting the sodium salt of 1a with 1-chloro-2,3-O-isopropylidene-5-O-(t-butyl)dimethylsilyl-α-D-ribofuranose ( 10 ) and subsequent deprotection of the blocked intermediate 11 . This study provided a convenient route to the preparation of aromatic pyrrole nucleosides.  相似文献   

6.
A number of 2,4-disubstituted pyrrolo[3,2-d]pyrimidine N-5 nucleosides were prepared by the direct glycosylation of the sodium salt of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine (3) using 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D -erythropentofuranose (1) and 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose (11) . The resulting N-5 glycosides, 2,4-dichloro-5-(2-deoxy-3,5-di-O-(p-toluoyl) -β-D-erythropentofuranosyl)-5H-pyrrolo-[3,2-d]pyrimidine (4) and 2,4-dichloro-5-(2,3,5-tri-O-benzyl-β-D-arabinofuranosyl-5H -pyrrolo [3,2-d)pyrimidine (12) , served as versatile key intermediates from which the N-7 glycosyl analogs of the naturally occurring purine nucleosides adenosine, inosine and guanosine were synthesized. Thus, treatment of 4 with methanolic ammonia followed by dehalogenation provided the adenosine analog, 4-amino-5-(2-deoxyerythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidine (6) . Reaction of 4 with sodium hydroxide followed by dehalogenation afforded the inosine analog, 5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (9) . Treatment of 4 with sodium hydroxide followed by methanolic ammonia gave the guanosine analog, 2-amino-5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (10) . The preparation of the same analogs in the β-D-arabinonucleoside series was achieved by the same general procedures as those employed for the corresponding 2′-deoxy-β-D-ribonucleoside analogs except that, in all but one case, debenzylation of the sugar protecting groups was accomplished with cyclohexene-palladium hydroxide on carbon, providing 4-amino-5-β-D-arabinofuranosyl-5H-pyrrolo [3,2-d]pyrimidin-4(3H)-one (18) . Structural characterization of the 2′-deoxyribonucleoside analogs was based on uv and proton nmr while that of the arabinonucleosides was confirmed by single-crystal X-ray analysis of 15a . The stereospecific attachment of the 2-deoxy-β-D-ribofuranosyl and β-D-arabinofuranosyl moieties appears to be due to a Walden inversion at the C1 carbon by the anionic heterocyclic nitrogen (SN2 mechanism).  相似文献   

7.
The synthesis of oligonucleotides containing 7-(2-deoxy-β-D-erythro-pentofuranosyl)guanine and 8-amino-2′-deoxyguanosine was accomplished. The viable intermediate N2-isobutyryl-7-(2-deoxy-β-D-erythro-pentofuranosyl)guanine ( 6 ) was prepared via a four step deoxygenation procedure from 7-β-D-ribofuranosylguanine ( 1 ). The 5′-hydroxyl group of 6 was protected as 4,4′-dimethoxytrityl ether and then converted to the target phosphoramidite ( 8 ) via conventional phosphitylation procedure. The amino groups of 8-amino-2′-deoxyguanosine ( 9 ) were protected in the form of N-(dimethylainino)methylene functions to give the protected nucleoside 10 , which was subsequently converted to the target phosphoramidite 12 via dimethoxytritylation followed by phosphitylation. The phosphoramidites 8 and 12 were incorporated into a 26-mer and a 31-mer G-rich oligonucleotide using solid-support, phosphoramidite methodology. Analysis of antiparallel triplex formation by the oligonucleotides containing 7-(2-deoxy-β-D-erythro-pentofura-nosyl)guanine in place of 2′-deoxyguanosine showed no enhancement in triple helix formation.  相似文献   

8.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

9.
The synthesis of 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-erythro- (1) and α-L-threo-hexulopyranose (2) from 3-deoxy-1,2-O-isopropylidene-β-D-erythro-hexulopyranose (5) from D-fructose is described, as well as their respective transformation into 3,5-dideoxy-1,2-O-isopropylidene-5-C-hydroxymethyl-β-D-threo-(3) and -α-L-erythro-hexulopyranose (4) by inversion of configuration at C-4.  相似文献   

10.
The stereospecific cis-hydroxylation of 1-(2,3-dideoxy-β-D -glyceropent-2-enofuranosyl)thymine (1) into 1-β-D -ribofuranosylthymine (2) by osmium tetroxide is described. Treatment of 2′,3′-O, O-isopropylidene-5-methyl-2,5′-anhydrouridine (8) with hydrogen sulfide or methanolic ammonia afforded 5′-deoxy-2′,3′-O, O-isopropylidene-5′-mercapto-5-methyluridine (9) and 2′,3′-O, O-isopropylidene-5-methyl-isocytidine (10) , respectively. The action of ethanolic potassium hydroxide on 5′-deoxy-5′-iodo-2′,3′-O, O-isopropylidene-5-methyluridine (7) gave rise to the corresponding 1-(5-deoxy-β-D -erythropent-4-enofuranosyl)5-methyluracil (13) and 2-O-ethyl-5-methyluridine (14) . The hydrogenation of 2 and its 2′,3′-O, O-isopropylidene derivative 4 over 5% Rh/Al2O3 as catalyst generated diastereoisomers of the corresponding 5-methyl-5,6-dihydrouridine ( 17 and 18 ).  相似文献   

11.
The synthesis of 6-amino-1-(2′,3′-dideoxy-β-D -glycero-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( =8-aza-7-deaza-2′,3′-dideoxyguanosine; 1 ) from its 2′-deoxyribofuranoside 5a by a five-step deoxygenation route is described. The precursor of 5a, 3a , was prepared by solid-liquid phase-transfer glyscosylation which gave higher yields (57%) than the liquid-liquid method. Ammonoloysis of 3b furnished the diamino nucleoside 3c . Compound 1 was less acid sensitive at the N-glycosydic bond than 2′,3′-dideoxyguanosine ( 2 ).  相似文献   

12.
The heterocyclizations from various methyl (2-nitrobenzoyl)carbamates to substituted quinazoline-2,4(1H,3H)-diones under hydrogenation conditions were investigated in this study. In the presence of p-toluenesulfonic acid monohydrate in methanol, various quinazoline-2,4(1H, 3H)-diones were obtained in good to excellent yields within 12?h. The reaction was proposed to proceed through the cascade reactions of nitro reduction and condensation.  相似文献   

13.
Summary Thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione (4) was silylated and condensed with methyl 5-azido-2,5-dideoxy-3-O-(4-methylbenzoyl)-D-erythro-pentofuranoside (2) in the presence ofTMS triflate to afford the corresponding protected nucleoside6 and acyclic nucleoside7. Deprotection of6 with MeONa/MeOH at room temperature gave 1-(5-azido-2,5-dideoxy--D-erythro-pentofuranosyl)-thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione (8) and the corresponding anomer9, whereas compound7 yielded 5-azido-2,5-dideoxy-1-(2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-1-yl)-1-O-methyl-D-erythro-pentitol (10) under the same reaction conditions. 1-(5-Amino-2,5-dideoxy--D-erythro-pentofuranosyl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione (11) was obtained on treating9 with Ph3P in pyridine followed by hyrolysis with NH4OH. The anomeric nucleosides14 and15 and the corresponding acyclic nucleoside16 were obtained when4 was trimethylsilylated and condensed with methyl 2-deoxy-3,5-di-O-(4-methylbenzoyl)-D-erythro-pentofuranoside (3) followed by deprotection with MeONa in MeOH. Compounds8 and9 were also obtained when the anomeric mixture14/15 was treated with a mixture of NaN3, Ph3P, and CBr4 in dryDMF at room temperature.On leave from Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt  相似文献   

14.
2′-Deoxyribofuranosyl and arabinofuranosyl nucleosides of certain purine-6-sulfenamides, sulfinamides and sulfonamides have been prepared by sequential amination and controlled oxidation of the corresponding 6-thiopurine nucleosides, and evaluated for antiviral and antitumor activities in mice. Amination of 2′-deoxy-6-thioinosine ( 4a ) and 9-β-D-arabinofuranosyl-6-thiopurine ( 4c ) with chloramine solution gave the corresponding 6-sulfenamides 5a and 5c , respectively, which on selective oxidation with 3-chloroperoxybenzoic acid (MCPBA) gave diastereomeric 9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6a ) and 9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6c ), respectively. However, oxidation of 5a and 5c with excess of MCPBA gave the corresponding 6-sulfonamide derivatives 7a and 7c , respectively. Similar amination of 2′-deoxy-6-thioguanosine ( 4b ), ara-6-thioguanine ( 4d ) and α-2′-deoxy-6-thioguanosine ( 8 ) gave the respective 6-sulfenamide derivatives 5b, 5d and 9 . Controlled oxidation of 5b, 5d and 9 gave (R,S)-2-amino-9-(2-deoxy-β-D-erythro-pentofuranosyl)purine-6-sulfinamide ( 6b ), (R,S)-2-amino-9-β-D-arabinofuranosylpurine-6-sulfinamide ( 6d ) and the α-anomer of ( 6b) (10 ), respectively. The diastereomeric mixture of (R,S )-10 was partially resolved and the structure of S -10 was assigned by single-crystal X-ray diffraction analysis. Oxidation of 5b, 5d and 9 with excess of MCPBA afforded the respective 6-sulfonamide derivatives 7b, 7d and 11 . Nucleosides 5c and 7c were significantly active against Friend leukemia virus in mice, whereas 6c was somewhat less active. Of the 20 nucleosides evaluated, 12 exhibited biologically significant anti-L1210 activity in mice. Nucleosides 6b and 7a at 173 mg/kg/day × 1 showed a T/C of 153, whereas 7d at 800 mg/kg/day × 1 showed a T/C of 153 against L1210 leukemia. The α-nucleoside 9 at 480 mg/kg/day × 1 gave a T/C of 172. A single treatment with 6b, 7a, 7d and 9 reduced the body burdens of viable L1210 cells by more than 99.2%. The antileukemic activity of these novel nucleosides tended to parallel solubility.  相似文献   

15.
16.
Nucleophilic substitution at C3′ of 1-(2-deoxy-5-O-trityl-β-D-erythr-pentofuranosyl)-2-methoxy-5-methyl-4(1H)-pyrimidinone (5) with methyl iodide/triphenylphosphine/diethyl azodicarboxylate gave the expected inverted iodide 6 and minor epimer 7 . Treatment of 6 with lithium nitrite/phloroglucinol yielded the desired nitro derivative 8 and subsequent acidic deprotection afforded the title compound 1 . This represents a novel method for the introduction of a nitro group into the furanosyl moiety of a nucleoside. The nmr spectroscopic techniques (COSY, NOESY, nOe, HMQC and HMBC) were used to determine the stereochemistry at C3′ of the nucleosides. Spectral analysis of H-D exchange at the 3′-position of 1 did not indicate the formation of its epimer 10 .  相似文献   

17.
The 2′-deoxyribofuranose analog of the naturally occurring antibiotics SF-2140 and neosidomycin were prepared by the direct glycosylation of the sodium salts of the appropriate indole derivatives, with 1-chloro-2- deoxy-3,5-di-O-p-toluoyl-α-D-erythropentofuranose ( 5 ). Thus, treatment of the sodium salt of 4-methoxy-1H- indol-3-ylacetonitrile ( 4a ) with 5 provided the blocked nucleoside, 4-methoxy-1-(2-deoxy-3,5-di-O-p-toluoyl-β- D-erythropentofuranosyl)-1H-indol-3-ylacetonitrile ( 6a ), which was treated with sodium methoxide to yield the SF-2140 analog, 4-methoxy-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indol-3- ylacetonitrile ( 7a ). The neosidomycin analog ( 8 ) was prepared by treatment of the sodium salt of 1H-indol-3-ylacetonitrile ( 4b ) with 5 to obtain the blocked intermediate 1-(2-deoxy-3,5-di-O-p-toluoyl-β-D-erythropentofuranosyl) ?1H-indol-3-ylace-tonitrile ( 6b ) followed by sodium methoxide treatment to give 1-(2-deoxy-β-D-erythropentofuranosyl)-1H- indol-3-ylacetonitrile ( 7b ) and finally conversion of the nitrile function of 7b to provide 1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indol-3-ylacetamide ( 8 ). In a similar manner, indole ( 9a ) and several other substituted indoles including 1H-indole-4-carbonitrile ( 9b ), 4-nitro-1H-indole ( 9c ), 4-chloro-1H-indole-2-carboxamide ( 9d ) and 4-chloro-1H-indole-2-carbonitrile ( 9e ) were each glycosylated and deprotected to provide 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11a ), 1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole-4- carbonitrile ( 11b ), 4-nitro-1-(2-deoxy-β-D-erythropentofuranosyl)-1H-indole ( 11c ), 4-chloro-1-(2-deoxy-β-D- erythropentofuranosyl)-1H-indole-2-carboxamide ( 11d ) and 4-chloro-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole-2-carbonitrile ( 11e ), respectively. The 2′-deoxyadenosine analog in the indole ring system was prepared for the first time by reduction of the nitro group of 11c using palladium on carbon thus providing 4-amino-1-(2-deoxy-β-D-erythropentofuranosyl)- 1H-indole ( 16 , 1,3,7-trideaza-2′-deoxyadenosine).  相似文献   

18.
Condensation of 2,4-bis(trimethylsilyloxy)pyridine ( 1 ) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 2 ) gave 4-hydroxy-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 3 ). Deblocking of 3 gave 4-hydroxy-1-β-D-ribofuranosyl-2-pyridone (3′-deazauridine) ( 4 ). Treatment of 4 with acetone and acid gave 2′,3′-O-isopropylidene-3-deazauridine ( 6 ). Reaction of 4 with diphenylcarbonate gave 2-hydroxy-1-β-D-arabinofuranosyl-4-pyridone-O2←2′-cyclonucleoside ( 7 ) which established the point of gylcosidation and configuration of 4 . Base-catalyzed hydrolysis of 7 gave 4-hydroxy-1-β-D-arabinofuranosyl-2-pyridone (3-deazauracil arabinoside) ( 12 ). Fusion of 1 with 3,5-di-O-p-toluyl-2-deoxy-D-erythro-pentofuranosyl chloride ( 5 ) gave the blocked anomeric deoxynucleosides 8 and 10 which were saponified to give 4-hydroxy-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazauridine) ( 11 ) and its α anomer ( 9 ). Condensation of 4-acetamido-2-methoxypridine ( 13 ) with 2 gave 4-acetamido-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-2-pyridone ( 14 ) which was treated with alcoholic ammonia to yield 4-acetamido-1-β-D-ribofuranosyl-2-pyridone ( 15 ) or with methanolic sodium methoxide to yield 4-amino-1-β-D-ribofuranosyl-2-pyridone (3-deazacytidine) ( 16 ). Condensation of 13 and 2,3,5-tri-O-benzyl-D-arabinofuranosyl chloride ( 17 ) gave the blocked nucleoside 22 which was treated with base and then hydrogenolyzed to give 4-amino-1-β-D-arabinofuranosyl-2-pyridone (3-deazacytosine arabinoside) ( 23 ). Fusion of 13 with 5 gave the blocked anomeric deoxynucleosides 18 and 20 which were deblocked with methanolic sodium methoxide to yield 4-amino-1-(2-deoxy-β-D-erythro-pentofuranosyl)-2-pyridone (2′-deoxy-3-deazacytidine) ( 21 ) and its a anomer 19 . The 2′-deoxy-erythro-pentofuranosides of both 3-deazauracil and 3-deazacytosine failed to obey Hudson's isorotation rule but did follow the “quartet”-“triplet” anomeric proton splitting pattern in the 1H nmr spectra.  相似文献   

19.
Abstract

Upon sodium cyanoborohydride reduction followed by de-O-silylation, the O-methyloxime and N-benzylnitrone of 5′-TBDMS-3′-ketothymidine gave resolvable epimeric mixtures of 1-[2,3-dideoxy-3-(N-methoxyamino)-β-d-threo-and β-d-erythro-pentofuranosyl]thymine and 1-[3-(N-benzyl-N-hydroxyamino)-2,3-dideoxy-β-d-threo- and β-d-erythro-pentofuranosyl]thymine respectively. These compounds were inactive against HIV. On the other hand, 1-[2,3-dideoxy-3-(N-hydroxyamino)-5-O-TBDMS-β-d-threo-pentofuranosyl]thymine, upon treatment with acetone, then de-O-silylation, gave the bicyclonucleoside analogue 15, slightly more active against HIV in vitro than DDI.  相似文献   

20.
The synthesis of the 7-deaza-2′-deoxy-adenine derivatives 7b–3 with chloro, bromo, or methyl substituents at C(5) is described. Glycosylation of the 5-substituted 4-chloropyrrolo[2,3-d]pyrimidines 4b–d with 2-deoxy-3,5-di-O-(4-toluoyl)-α-D -erythro-pentofuranosyl chloride ( 3 ) gave the β-D -nucleosides 5b–d , exclusively. They were deblocked (→ 6b–d ) and converted into the tubercidin derivatives 7b–d .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号