首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10−9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10−9.  相似文献   

2.
We propose a new architecture for 10 Gb/s upstream traffic in TDM-PON using externally injection-locked Fabry-Perot laser diodes (FP-LDs) in each optical network unit (ONU). Four directly modulated 2.5 Gb/s FP-LDs were injection-locked by continuous wave (CW) carriers distributed from the optical line terminal (OLT). Hence, a total of 10 Gb/s upstream traffic can be achieved. Experimental results show negligible power penalty at a transmission of 25 km standard single mode fiber (SMF) without dispersion compensation. The performance of the injection-locked FP-LD is also studied.  相似文献   

3.
We experimentally investigated the performance degradation due to broadband light source (BLS) polarization in wavelength-division multiplexing-passive optical network systems based on a wavelength-locked Fabry-Perot laser diode. The results showed that the BLS polarization difference between two polarization states should be less than 3 dB, and its injection power should be greater than −18 dBm for a received-power penalty of less than 1 dB.  相似文献   

4.
According to the present passive optical network (PON) standard, the fiber transmission lengths are from 500 m to 20 km between the optical line terminal (OLT) and different optical network units (ONUs). It will result in difference power losses (ΔPloss) from 4 to 5 dB. Hence, we propose to adjust adaptively the output optical power of the upstream laser diode (LD) depending on the different fiber lengths. With the different fiber transmission lengths, we can properly adjust the bias current and modulation index of upstream LD for energy-saving. We characterize and analyze experimentally the relationship of output optical power and modulation amplitude Vamp under different fiber transmissions in PON access. Moreover, due to the adaptive power control of upstream signal, the optical upstream equalization also can be retrieved with power variation of 1.1 dB in this experiment.  相似文献   

5.
In this letter, we propose a new architecture of Time Wavelength Division Multiplexing Passive Optical Network (TWDM PON) system to support dynamic multi wavelength allocation (DMWA) in both upstream and downstream directions using an integrated semiconductor optical amplifier (SOA) and arrayed waveguide grating (AWG) with multi wavelength select continuous wave (CW) pump probe signal module. The significance of this architecture is the flexible routing function with the capability of multicasting and broadcasting between multiple optical line terminal (OLT) PON port with multiple optical distribution network (ODN) link using a new wavelength tuning free (WTF) OLT transmitter module to eliminate wavelength tuning delay in downstream signal utilizing multicasting Cross Gain Modulation (XGM) wavelength conversion. The experimental results show that 4λ × 10-Gb/s TWDM PON system can be used to connect 4096 users with the conventional fixed wavelength OLT transceivers with 36 dB link loss.  相似文献   

6.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

7.
Reconfigurable multi-channel optical power splitter is proposed and its optical properties are calculated. The device can dynamically reconfigure the number of splitting channels by providing programmed refractive index modulations on a multimode interference (MMI) waveguide. A reconfigurable 3-channel optical power splitter is designed to work as 1 × 1, 1 × 2 or 1 × 3 optical power splitter depending on the state of the heat electrodes using thermo-optic modulation, and the input light can be distributed to three output channels with sequential orders. The device can work in the whole C-band (1530-1565 nm) with extinction ratio better than −29.0 dB, excess loss better than −0.45 dB, imbalance better than 0.08 dB and polarization dependent loss (PDL) better than 0.14 dB. The design conception is scalable to a multi-channel splitting-on-demand optical power splitter which can divide input light to 1, 2, …, N output channels equally by using the 3-channel reconfigurable optical power splitter as a building block.  相似文献   

8.
We propose and demonstrate a 10 Gb/s wavelength division multiplexed passive optical network (WDM-PON) where subcarriers are employed to transmit the downstream data and optical carriers of the downlink subcarrier modulated (SCM) lights are reused to injection lock Fabry-Perot laser diodes (FP-LDs) for uplink transmission. Experiment results show that a very good BER performance can be achieved for both uplink and downlink at 10 Gb/s. The impact of optical carrier to subcarrier ratio and wavelength mismatching is also investigated.  相似文献   

9.
Two types of lasers based on hydrogen-like impurity-related transitions in bulk silicon operate at frequencies between 1 and 7 THz (wavelength range of 50-230 μm). These lasers operate under mid-infrared optical pumping of n-doped silicon crystals at low temperatures (<30 K). Dipole-allowed optical transitions between particular excited states of group-V substitutional donors are utilized in the first type of terahertz silicon lasers. These lasers have a gain ∼1-3 cm−1 above the laser thresholds (>1 kW cm−2) and provide 10 ps-1 μs pulses with a few mW output power on discrete lines. Raman-type Stokes stimulated emission in the range 4.6-5.8 THz has been observed from silicon crystals doped by antimony and phosphorus donors when optically excited by radiation from a tunable infrared free electron laser. The scattering occurs on the 1s(E)→1s(A1) donor electronic transition accompanied by an emission of the intervalley transverse acoustic g-phonon. The Stokes lasing has a peak power of a few tenths of a mW and a pulse width of a few ns. The Raman optical gain is about 7.4 cm GW−1 and the optical threshold intensity is ∼100 kW cm−2.  相似文献   

10.
In this paper, we investigate an SOA (semiconductor optical amplifier) preamplifier structure by optimizing the carrier lifetime in order to reduce the amplified spontaneous emission (ASE) noise and crosstalk, with adequate gain increase. This proposed SOA optical preamplifier has no need of optical alignment and antireflection coating. This structure of SOA eliminates the need of optical filter, and exhibits large tolerance to the input light wavelength. The receiver sensitivity is investigated for single and multi channel transmission links. The received power of − 50.34 dBm is observed at bit error rate (BER) 10− 12 for 10 Gb/s with PIN receiver. Further, the impact of gain, amplified spontaneous emission power and gain variation for different carrier lifetime with input power for OOK system is illustrated. The proposed SOA has constant gain of 30.06 dB up to gain saturation for carrier lifetime 0.18 ns. It is predicted that low value of carrier lifetime suffers less from ASE noise.  相似文献   

11.
In this paper we report on the characterization of a narrow linewidth three-section tunable slotted Fabry-Perot laser. The SMSR of the 25 available 100-GHz ITU channels is above 30 dB, whereas their average linewidth is 538 kHz with a maximum below 800 kHz. The RIN spectra of six different channels are also measured and a maximum average RIN of −135 dB/Hz is obtained. The linewidth effect of the laser in a 1.25 Gb/s DPSK transmission system is investigated by comparing the performance between the slotted Fabry-Perot laser and a commercial SG-DBR laser respectively. Error free transmission of the slotted Fabry-Perot laser shows the benefit of the narrow linewidth of the device for systems employing advanced modulation formats.  相似文献   

12.
A novel apparatus for a sensitive test of the independence of the speed of optical waves from the propagation direction has been developed. It employs a monolithic ULE glass structure containing two orthogonal, crossing Fabry-Perot cavities which enable common mode rejection of certain disturbances. Highly accurate locking and cavity frequency read-out are achieved using laser frequency modulation at audio frequencies. Several systematic effects were characterized. Without rotation the root Allan variance (RAV) of the beat frequency reaches a minimum of 0.5 Hz (2 × 10−15) close to the thermal noise floor of the cavities. The performance of the apparatus under rotation is demonstrated by determining with improved accuracy one parameter of the standard model extension test theory,  = (−1.0 ± 2.3) × 10−15, under simplifying assumptions.  相似文献   

13.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

14.
Scanning tunneling microscopy luminescence (STML) was induced from the nanometer scale surfaces of cleaved n-type and p-type GaAs(1 1 0) wafers by using of an ITO-coated optical fiber probe in an ultrahigh-vacuum chamber. The STML from n-type GaAs(1 1 0) surface was induced under negative sample bias when the applied bias exceeds a threshold voltage around −1.5 V. Whereas the STML from p-type GaAs(1 1 0) surface was induced under positive sample bias when the applied bias exceeds a threshold voltage around +1.5 V. The excitation energies at the threshold voltages are consistent with the band gap of GaAs (1.42 eV) at 295 K. The typical quantum efficiencies for n-type and p-type GaAs are about 3 × 10−5 and 2 × 10−4 photons/electron, respectively. The observed STML from are attributed to a radiative recombination of electron-hole pairs generated by a hole injection for n-type GaAs under negative sample bias and an electron injection for p-type GaAs under positive sample bias, respectively.  相似文献   

15.
The time-resolved multistage reservoir model well-known for semiconductor optical amplifier (SOA) is extended to analyze the behavior of a bulk homogeneous InP-InGaAsP buried heterostructure reflective semiconductor optical amplifier (RSOA). Parameters for simulation have been extracted from the experimental RSOA characteristics. We have employed the model to explain the steady-state and re-modulation dynamics in the RSOA. Electrical modulation bandwidth and intermodulation distortion in the RSOA have been derived from the model and close agreement is obtained with the reported data. It is found out that the ripples in the upstream output from the RSOA for incomplete modulation erase of downstream modulated data follow Gaussian distribution, which simplifies the calculation of upstream SNR and bit error rate. It is explained in detail that amplitude ripples in the upstream data can be reduced by judicious choice of optical and electrical parameters of the RSOA. In particular, for an average low downstream power level (<−20 dBm) a good downstream modulation erase factor about 89% and 23 dB extinction ratio in the upstream modulated signal can be achieved.  相似文献   

16.
By using an optical circulator and C/L-band wavelength division multiplexer to recycle the C-band backward ASE, an L-band gain-clamped erbium-doped fiber amplifier is presented. We have experimentally studied the static gain clamping property of this amplifier. As the ASE feedback attenuation is set to 0, the gain at 1585 nm can be clamped at 18.84 ± 0.26 dB within dynamic range of 25 dB and the critical power reaches about −15.09 dBm. The gain variation and saturated output power at 1585 nm for 0 dB attenuation are 1 dB lower and 2.17 dB higher than those for 30 dB attenuation, which indicates that the L-band EDFA gain can be effectively clamped via the ASE injection technique.  相似文献   

17.
An optical power equalization amplifier with a wide dynamic range is proposed and demonstrated with no electronic control. It shows constant and equalized outputs when a power difference between input channels and a total input power are changed. It has more than a 15 dB dynamic range for input signals between −30 dBm and −5 dBm. The structure of this amplifier can be more promising when it is applied to a planar waveguide device.  相似文献   

18.
We experimentally study both reshaping of nonreturn-to-zero (NRZ) signal and NRZ to pseudoreturn-to-zero (PRZ) format conversion based on self-phase modulation of a semiconductor optical amplifier (SOA) and detuning an optical bandpass filter (OBF). When an OBF with 1 nm bandwidth is blue shifted by 0.8 nm, the distortion of the amplified NRZ signal at 10 Gbit/s is shown to be eliminated completely. When an OBF with 0.32 nm bandwidth is red shifted by 0.42 nm from the carrier frequency, NRZ-to-PRZ conversion at 10 Gbit/s is obtained. A holding beam is used to suppress the SOA noise and improve the output extinction ratio (ER). The output ER of both the reshaped NRZ and the converted PRZ is larger than 10 dB when the signal wavelength is longer than 1540 nm, and an input power dynamic range from −7 dBm to 2 dBm is obtained at a signal wavelength of 1563.6 nm. The average power of the reshaped NRZ signal is about 3 dBm at an input power dynamic range of 13 dB. The amplitude fluctuation of the converted PRZ signal is around 1.6 dB.  相似文献   

19.
A novel method for measuring the nonlinear refractive index of an optical fiber using a spectral ratio between the modulation frequency and a harmonic component in a modulated optical fiber ring resonator (OFRR) is proposed. The spectral ratio between the modulation frequency and the 2nd-harmonics generated by phase-modulation through the OFRR is increased with increasing the input light power and has peaks above 5 W input power, however, the peaks was shifted to the lower input power below 1 W by averaging taken into account of the phase distribution. A experimental setup consisted of an OFRR system and an Ar-laser as a pump light source was used to determine the nonlinear refractive index of an optical fiber. In the experimental results, the peaks of the spectral ratio as a function of the input power was found out at 0.8 W and 0.45 W of the input power corresponding to the input source line at 488.0 nm and 514.5 nm, respectively. The profile was similar to that obtained by the simulation and the nonlinear refractive index of a optical fiber was determined as 1.0 × 10−22 m2/V2 by a relationship between the input power giving the peak and the nonlinear refractive index.  相似文献   

20.
We experimentally and theoretically demonstrate 40 Gb/s all-optical logic NOR and OR gates based on a semiconductor optical amplifier (SOA) and a blue shifted optical bandpass filter (OBF). Two kinds of data formats are discussed, namely return-to-zero (RZ) format and nonreturn-to-zero (NRZ) format. The logic NOR and OR functions of RZ format are realized at the OBF detuning of −0.22 nm and −0.44 nm, respectively. The logic NOR function of NRZ format is realized at the OBF detuning of −0.24 nm. The simulation is in good agreement with the experimental results when the linewidth enhancement factor is 5.5. The simulation also shows that the SOA with large linewidth enhancement factor is preferred to achieve NOR and OR functions with good performance. The input data signal is of good pulsewidth-tolerance for NOR function, whereas not for OR function. The high Q factor could be obtained at narrow pulses injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号