首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Optics has already proved its strong potentiality for the conduction of parallel logic, arithmetic and algebraic operations. In the last few decades several all-optical data processors were proposed. To implement these processors different data encoding/decoding techniques have been reported. In this context, polarization encoding technique, intensitybased encoding technique, tristate and quaternary logic operation, multivalued logic operations, symbolic substitution techniques etc. may be mentioned. Very recently, frequency encoding/decoding technique has drawn interest from the scientific community. Frequency is the fundamental character of any signal; and it remains unaltered in reflection, refraction, absorption etc. during the propagation and transmission of the signal. This is the most important advantage of frequency encoding technique over the conventional encoding techniques. In this communication the authors propose a new scheme for implementing NOT, OR and NOR logic operations. For this purpose co-propagating beams having different frequencies in C-band (1535–1560 nm) have been used for generating cascaded sum and difference frequency, exploiting the nonlinear response character of periodically poled LiNbO3 waveguide. The cross-gain modulation property of the semiconductor optical amplifier (SOA) and the wavelength conversion property of the reflecting semiconductor optical amplifiers (RSOA) are exploited here to implement the desired optical logic and arithmetic operations.  相似文献   

2.
Sisir Kumar Garai 《Optik》2010,121(8):715-721
Optics has already been proved its successful roles for conduction of parallel logic, arithmetic and algebraic operations. Since last few decades many types of optical data processors were proposed. To implement these processors different data encoding/decoding techniques have been reported. In this context polarization encoding technique, tristate, quartenary logic, multivalued logic, symbolic substitution techniques etc. may be mentioned. Very recently, frequency encoding/decoding technique have also been well established. The potential advantage of frequency dependent encoding/decoding is that, as the frequency being the fundamental character of a signal; it will remain unaltered in reflection, refraction, absorption etc. during transmission of the signal. In this communication the authors propose a scheme for implementing different logic operations adopting frequency based encoding technique. For this purpose the second harmonic generation and difference frequency generation techniques are used by exploiting the non-linear response character of some materials.  相似文献   

3.
Multiplexing and demultiplexing are the essential parts of any communication network. In case of optical multiplexing and demultiplexing the coding of the data as well as the coding of control signals are most important issues. Many encoding/decoding mechanisms have already been developed in optical communication technology. Recently frequency encoding technique has drawn some special interest to the scientific communities. The advantage of frequency encoding technique over any other techniques is that as the frequency is fundamental character of any signal so it remains unaltered in reflection, refraction, absorption, etc. during transmission of the signal and therefore the system will execute the operation with reliability. On the other hand, the switching speed of semiconductor optical amplifiers (SOA) is sufficiently high with property of best on/off contrast ratio. In our present communication we propose a method of implementing a ‘4-to-1’ multiplexer (MUX) and a ‘1-to-4’ demultiplexer (DEMUX) exploiting the switching character of nonlinear SOA with the use of frequency encoded control signals. To implement the ‘4-to-1’ MUX and ‘1-to-4’ DEMUX system, the frequency selection by multiquantum well (MQW)-grating filter-based SOA has been used for frequency routing purpose. At the same time, the polarization rotation character of SOA has also been exploited to get the desired purpose. Here the fast switching action of SOA with reliable frequency encoded control input signals, it is possible to achieve a faithful MUX/DEMUX service at tera-Hz operational speed.  相似文献   

4.
During the last few decades several logic gates, sequential and combinational logic devices, have been developed using light signals. For this work several encoding as well as decoding techniques are proposed for data handling and information processing with optics as information carrying signal. Frequency encoding technique is one such type of encoding processes, which gives a very good response for long distance communication of logically processed data because frequency is a fundamental character of light and it remains unchanged for long distance communication. Here in this paper the authors propose a frequency encoded multiplexer with the proper use of semiconductor optical amplifier in tri-state logic.  相似文献   

5.
In binary logic the information is represented by two distinct states only (0 and 1 state). The major disadvantage of the binary or Boolean logic operation is due to its limitation of large information handling capacity. It is established that tristate operations can be accommodated with optics in data processing, as this type of operation can enhance the operation speed very much as well as information capacity. Here in this communication the authors propose a new concept to implement all-optical different logic gates with tristate mechanism using frequency-encoding principle. For this purpose, co-propagating beams having different frequencies in C-band have used for generating cascaded sum and difference frequency, exploiting the nonlinear response character of periodically poled LiNbO3 waveguide (PPLN). The highly reflecting property of optical add and drop multiplexer (ADM) and high wavelength conversion property of reflecting semiconductor optical amplifiers (RSOA) have been exploited here to implement the desired AND, NAND,OR and NOR logic operations with tristate. As NAND and NOR are the universal logic operation, so any other member of this logic family may be implemented with these.  相似文献   

6.
In all optical networking and computing system, the role of all-optical flip-flops is very much essential. For signal synchronization with a reference clock and for storage of digital bits the flip-flop has no alternative. In this communication the authors propose a method of developing an all optical frequency encoded clocked R-S flip-flop using the non-linear character of semiconductor optical amplifiers. Frequency is the basic character of light and several encoding/decoding problems in computations and communications can be solved using the frequency encoding principle of optical data. The proposed system is all-optical and therefore it can extend a super fast speed of operation (far above THz limit).  相似文献   

7.
The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, respectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evolution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms. Supported by the National Natural Science Foundation of China (Grant No. 10475052) and the Scientific Research Start-up Financing of Qufu Normal University  相似文献   

8.
Sisir Kumar Garai 《Optik》2010,121(16):1462-3807
Optics has already proved its strong potential in information and data processing because of its inherent parallelism. Several all-optical data processors were proposed since the last few decades. Again it is also known that tristate operations can be well accommodated with optics in data and information processing, as this type of operation can enhance the information quality and capacity. Very recently, the concept of frequency variant encoding /decoding technique has been established because of its basic advantages. The potential advantage of frequency-dependent encoding/decoding is that, as the frequency is the fundamental character of a signal, it will remain unaltered in reflection, refraction, absorption, etc. during transmission. In this communication, the authors therefore propose a method of implementing frequency-encoded inversion logic operations with tristate logic using reflecting semiconductor optical amplifiers (RSOA).  相似文献   

9.
White light interferometer can be used to measure the amplitude extinction ratio (ER) of polarizer and coupling distribution in fiber. A LiNbO3 polarizer coupled with a polarization maintaining fiber and a silica planar waveguide at the two ends was measured using white light interferometer. According to the principles of optical coherence domain polarimeter (OCDP) technique, the test scheme is analyzed and presented to measure the ER of LiNbO3 polarizer with its apparatus proposed correspondingly. By analyzing the interference intensity, both the ER of LiNbO3 polarizer and its coupling crosstalk with optical fiber and waveguide are obtained. The results illustrate that the ER of a 5 mm-long LiNbO3 polarizer is 71 dB and the crosstalk of the coupling points are around 40 dB. The results have good agreement with analysis.  相似文献   

10.
A novel configuration is proposed for polarization insensitive wavelength conversions using a LiNbO3 waveguide with a periodically domain inverted structure. The proposed configuration consists of multiple rings, which are connected by a polarization sensitive wavelength converter such as the LiNbO3 waveguide described. One ring containing a pump light source is used to pump the wavelength converter bidirectionally, while the other rings containing a polarization beam splitter and a 90° polarization rotator are used to couple in the input signal and extract the converted light. The proposed method is proven experimentally by the wavelength conversion based on sum frequency generation.  相似文献   

11.
In conduction of parallel logic, arithmetic and algebraic operations, optics has already proved its successful role. Since last few decades a number of established methods on optical data processing were proposed and to implement such processors different data encoding/decoding techniques have also been reported. Currently frequency encoding technique is found be a promising as well as a faithful mechanism for the conversion of all-optical processing as the frequency of light remains unaltered after refection, refraction, absorption, etc. during the transmission of light. There are already proposed some frequency encoded optical logic gates. In this communication the authors propose a new and different concept of frequency encoded optical logic gates and optical flip-flop using the non-linear function of semiconductor optical amplifier.  相似文献   

12.
All-optical tunable wavelength conversion of ps-pulses is proposed and experimentally demonstrated by use of cascaded sum- and difference frequency generation (cSFG/DFG) in a periodically poled LiNbO3 (PPLN) waveguide. The amplified spontaneous emission (ASE) noise is effectively suppressed by employing two tunable filters. As a result, tunable wavelength down- and up-conversions are simultaneously observed. The temporal evolutions of the signal, pump, control and idler waves propagating along the PPLN waveguide are simulated. From the temporal waveforms and optical spectra in the simulations, it is interesting to find that continuous wave (CW) pump and control are evolved into optical pulses during the cSFG/DFG nonlinear interactions. Moreover, some new sidebands in the output pump spectrum are observed both in the simulations and experiments.  相似文献   

13.
We have considered forward and backward optical parametric oscillation and amplification, and difference-frequency generation for efficiently generating and amplifying terahertz waves in several second-order nonlinear optical materials. We have used a single crystal of CdSe as an example. We have also investigated GaSe, periodically-poled LiNbO3 and LiTaO3, and diffusion-bonded-stacked GaAs and GaP plates. The advantage of using birefringence in CdSe and GaSe is tunability of the output terahertz frequency. Furthermore, both CdSe and GaSe can be used to achieve the backward parametric oscillation without any cavity. On the other hand, in periodically-poled LiNbO3 and LiTaO3, one can take advantage of large diagonal elements of second-order nonlinear susceptibility tensor. In the diffusion-bonded-stacked GaAs and GaP plates, quasi-phase matching can be achieved by alternatively rotating the plates. We have shown that it is feasible to achieve forward optical parametric oscillation in the THz domain using these plates. The advantage of using coherent parametric processes is possibility of efficiently generating and amplifying temporally-coherent and narrow-linewidth terahertz waves. Compared with a noncollinear configuration, by using the parallel wave propagation configurations, the conversion efficiency can be higher because of longer effective interaction length among all the waves.  相似文献   

14.
We report simulations concerning optical amplification in Er:Ti:LiNbO3 curved waveguides. The derivation and the evaluation of the spectral optical gain, the spectral noise figure, the amplified spontaneous emission photon number, and the signal to noise ratio are performed under the small gain approximation. The simulations show the evolution of these parameters under various pump regimes, Er concentration profiles and waveguide lengths. The results obtained are of significant interest for the design of complex, rare earth-doped integrated optics structures involving bent waveguides.  相似文献   

15.
We present a design technique of retarders suitable for nonlinear optical systems. A thin sample of LiNbO3 crystal is utilized as a retarder for wide-ranging applications. Analysis shows that the same crystal can be used for single-wave or two-wave retardations, changing the orientation of the crystal only. As an application, the retarder is used to polarize two waves orthogonal, as necessary for difference frequency mixing in an AgGaSe2 crystal.  相似文献   

16.
A periodically poled titanium (Ti)-diffusion waveguide in near-stoichiometric MgO:LiNbO3 (SMgLN) was fabricated that exhibits a second harmonic generation (SHG) efficiency of 63%. The device shows very high resistance to photorefractive damage at room temperature. All optical wavelength conversion by difference frequency generation (DFG) has been demonstrated in a periodically poled SMgLN (PPSMgLN) with Ti-diffusion channel waveguides. The wavelength conversion efficiency was measured to be −7.3 dB with the pump power of 150 mW and the signal power of 50 mW at room temperature.  相似文献   

17.
An optical second-harmonic wave can be generated in a three-layered optical waveguide of arbitrary film thickness under phase-matching condition. Phase-matching is achieved by utilizing mode dispersion in an optical waveguide with a two-dimensional configuration. A numerical analysis of the matching condition is given and the results of the observation of the optical second-harmonic wave of a guided Nd : YAG laser in a Ti-indiffused LiNbO3 nonlinear film are described.  相似文献   

18.
In this paper, the improvement method of the traditional optical spectrum analyzer (OSA) is demonstrated to measure the half-wave voltage of LiNbO3 phase modulator with low RF driving. Based on calculating the measured powers ratio of the carrier and first-order side band with optical spectrum analyzer (OSA), the phase modulation index is between 0.5 and 1.43 and the voltage of driving signal is lower than 0.796 V, the accurate characterization of the phase modulator is obtained. By using this method, the half-wave voltage of a LiNbO3 phase modulator had been measured in the frequency range of 26 GHz. And, our experimental results showed a good agreement between the measured data and those provided by the manufacturer in 9 GHz frequency range. It is an accurate and easy method to measure the half-wave voltages of a phase modulators, especially for measuring high the frequency response.  相似文献   

19.
Full adders and full subtractors are the basic circuit elements of any digital data processor in electronics as well as in the all optical domain. Again the wavelength dependent encoding/decoding techniques have established itself as a very promising and efficient tool having some inherent and unique advantages relative to the other well known intensity or polarization or phase dependent optical data encoding mechanisms. In this communication, the authors therefore propose a new scheme of implementing a wavelength encoded complete binary full adder-full subtractor unit in the all optical domain using the wavelength conversion by the nonlinear polarization rotation in a single semiconductor optical amplifier. The interacting signals are counter propagating in the semiconductor optical amplifier and hence can be set at the same wavelength. To realize the binary logic wavelength dependent encoding/decoding mechanism is exploited in our proposed scheme of full adder-full subtractor unit. Also the optical add/drop multiplexing employing the special filtering property of the semiconductor optical amplifier is utilized for the designing of the all optical system.  相似文献   

20.
Electric-field domain inversion cannot be performed in z-cut LiNbO3 after waveguide fabrication using common Ti-indiffusion techniques. In this work we show that an appropriate combination of low indiffusion temperature, dry O2 and Li enriched atmosphere during waveguide fabrication allows subsequent domain inversion without the need for any surface grinding, which would dramatically increase the risk of LiNbO3 substrate breakage during its processing. The proposed technique allows a simplified, robust and high yield processing over full wafer scale (up to 4”) with sub-micron resolution. PACS 78.30.Hv; 77.84.Dy; 77.22.Jp; 81.40.-z; 81.40.Tv  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号