首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

2.
In this paper, we demonstrate mitigation of pattern-induced degradation in an optical crosspoint switch (OXS) matrix by utilizing differential phase shift keying (DPSK) modulation format. We experimentally demonstrate 4 × 4 unicast optical packet switching and dynamic reconfiguration for 4-channel, 200 GHz spacing of RZ-DPSK payloads. Reconfigurable time as fast as 2 ns is achieved owing to the optimized control circuit and device fabrication. The power and wavelength dependence are obtained for the RZ-DPSK payload. We also investigate the cascadability of the OXS based on re-circulating loops. Due to the great suppression of the pattern effect in OXS, DPSK has shown dramatical improvement of switching properties compared to conventional ON-OFF keying (OOK) signal. The DPSK payload can outperform OOK for 3.2 dB after 9 hops optical switching.  相似文献   

3.
In this paper, the channel capacity of 40 Gb/s multi-span nonlinear optical transmission systems with nonlinearity compensation and self-adapting Wiener filtering is studied by use of Finite State Machine (FSM) approach. The comparison of channel capacity of the system with differential phase shift keying (DPSK) and on–off keying (OOK) modulation is also investigated. The channel capacity increases monotonically with the input power for transmission systems with simultaneous compensation of dispersion and nonlinearity, which performs as well as linear system. DPSK shows a much better performance and the channel capacity has an improvement of at least 48 percent over that OOK modulation. A further reduction of the amplified spontaneous emission (ASE) noise accumulation is obtained by Wiener filtering, which improves the channel capacity considerably when the input peak power is less than 3 mW.  相似文献   

4.
In this paper, we investigate an SOA (semiconductor optical amplifier) preamplifier structure by optimizing the carrier lifetime in order to reduce the amplified spontaneous emission (ASE) noise and crosstalk, with adequate gain increase. This proposed SOA optical preamplifier has no need of optical alignment and antireflection coating. This structure of SOA eliminates the need of optical filter, and exhibits large tolerance to the input light wavelength. The receiver sensitivity is investigated for single and multi channel transmission links. The received power of − 50.34 dBm is observed at bit error rate (BER) 10− 12 for 10 Gb/s with PIN receiver. Further, the impact of gain, amplified spontaneous emission power and gain variation for different carrier lifetime with input power for OOK system is illustrated. The proposed SOA has constant gain of 30.06 dB up to gain saturation for carrier lifetime 0.18 ns. It is predicted that low value of carrier lifetime suffers less from ASE noise.  相似文献   

5.
We experimentally demonstrate an all-optical 10 Gb/s format conversion from non-return-to-zero (NRZ) on-off-keying (OOK) to return-to-zero (RZ)-OOK with tunable duty cycle in the whole C-band using nonlinear polarization rotation (NPR) arising in an semiconductor optical amplifier (SOA). The experimental results show that, by tuning the polarizer at the SOA output, an RZ signal with tunable duty cycle from 33% to 66% could be obtained with an extinction ratio(ER) over 10 dB. In addition, we show that the NRZ-to-RZ conversion with duty cycle of 33-66% can be obtained with less than 1 dB power penalty at the bit error ratio (BER) of 10−9. The device can facilitate the cross-connection between optical transmission networks employing different modulation formats.  相似文献   

6.
A semiconductor optical amplifier (SOA)-based regenerative amplification (SORA) of differential phase-shift keying (DPSK) signals for satellite application is presented, which has a simple frame and a large regenerative capacity to the small-power signals. The key mechanism of SORA is the discriminative gain provided by the SOA for the marks and spaces colliding in it. Simulation shows that, by using the SORA, the Q-factor improvement of degraded DPSK signals is about 0.7 dB, but it is significantly influenced by both optical confinement factor and gain relaxation time. Considering the satellite vibration, the bit error rate (BER) for the case of SORA can improve more than one order of magnitude compared with the case of no SORA.  相似文献   

7.
We present explicitly semi-analytical probability density functions (pdf’s) of noise statistics in DPSK receivers with Mach-Zehnder interferometer (MZI) demodulation with considering the phase noise for the first time. Error performance of DPSK receivers with MZI demodulation is evaluated by using the calculated pdf’s. It is found that DPSK receivers with MZI demodulation and balanced detection are less sensitive to phase noise impact than those with the single-port detection to some extent. Moreover, it is found that ASE-ASE beat noise induced pdf difference in balanced detection compared to single-port detection may result in ∼3 dB improvement in receiver sensitivity mainly depending on optical filtering, ASE-amplified spontaneous emission. Therefore, the measured receiver sensitivity improvement by using balanced detection consist of the improvements due to signal energy difference and ASE-ASE beat noise induced pdf difference compared to single-port detection.  相似文献   

8.
Awad ES  Cho PS  Goldhar J 《Optics letters》2007,32(4):352-354
We report a novel implementation of an all-optical rephasing, reshaping, and reamplification differential phase shift keying (DPSK) regenerator. The rephasing is based on converting phase noise into amplitude noise by using an interferometric configuration and then eliminating the amplitude noise by using a semiconductor optical amplifier (SOA). The reshaping is performed using gain competition and gain compression in a saturated SOA. The scheme was tested using 10Gbit/s, 2(23)-1 pseudorandom bit sequence return-to-zero DPSK data. The measurement shows removal of the degraded data error floor with a 6 order-of-magnitude improvement in bit-error rate. The measured negative power penalty is about 4dB. Mathematical analysis shows a reduction in DPSK phase-noise power by half.  相似文献   

9.
The polarization-mode dispersion (PMD) tolerance of 10 Gb/s polarization-multiplexing (PM) system is investigated. Using the importance sampling (IS) method, the outage probabilities of the PM systems with three modulation formats, including on-off keying (OOK), differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK), are quantified. When the amplified spontaneous emission (ASE) noise is assumed to be dominant, we evaluate the optical power penalties caused by the PMD effect at bit error rate (BER) of 10−12. The performance of compensated PM systems with variable optical delay line is also described. The simulation results indicate that the OOK signal with higher duty cycle (DC) performs better in the PM systems with PMD compensation. It is found that the higher-order PMD impairs seriously the performance of the PM system, and phase-keying formats are more sensitive to the PMD than the OOK.  相似文献   

10.
A performance analysis is carried out to evaluate the effect of cross-phase modulation (XPM) on a dispersion-managed 20 Gb/s optical wavelength-division multiplexing (WDM) transmission system using either the on-off keying (OOK) or the different-phase-shifting keying (DPSK) modulation, in the presence of the group-velocity dispersion (GVD), self-phase modulation (SPM), and amplified spontaneous emission (ASE). It is found that to achieve a bit error rate (BER) of 10−9 at a distance of 160 km, a 1.0 dB XPM power penalty is incurred for input channel power of 3 dBm in the OOK transmission and 7 dBm in the DPSK transmission. The power penalty increases with input channel powers and is inversely proportional and exhibits oscillations with respect to the channel separation. The oscillation is evenly spaced for the DPSK but not for the OOK and suggests the presence of optimum separation values. The XPM penalty decreases when a high dispersion fiber is used and increases linearly with increasing dispersion slope. Small residual dispersion can reduce the penalty of nonlinear effects.  相似文献   

11.
The dual sideband optical carrier suppression (DSB-OCS) technique is employed in the optical carrier generation for 40 GHz radio over fiber (ROF) system. A dual electrode Mach-Zehnder modulator (DE-MZM) with the minimum transmission bias (MiTB) technique is employed to build the system. The results show that, a 40 GHz carrier is successfully generated with the amplitude up to −29 dBm and signal to noise ratio (SNR) of 35 dB and a high definition (HD) signal is successfully transmitted using the system. Finally, the bit error rate (BER) measurement is carried out for the system with 1.25 Gbps OOK signal showing an error free 40 GHz ROF system with almost no penalty between the back to back and 20 km fiber for a BER of 10−9.  相似文献   

12.
100 Gb/s on-off keying (OOK) transmission over 212 km installed standard single-mode fibers using an Indium Phosphide (InP)-based electrical clock-data-recovery (CDR) and demultiplexer module was demonstrated. 5.5 × 10− 11 bit error rate (BER) performance was achieved and 1.1-dB optical signal-to-noise ratio (OSNR) penalty was required at 10− 9 BER after transmission.  相似文献   

13.
In this paper we propose a simple divided spectrum balanced detection (DSBD) for spectral amplitude coding (SAC) optical code division multiple access (OCDMA) systems. SAC OCDMA systems are limited by phase induced intensity noise (PIIN), which is a signal dependent source of noise. Our proposed technique reduces the PIIN by dividing the spectrum of the signal into two or more, and detecting each spectrum by a different photodiode. The DSBD scheme reduces the detected optical power at photodetection, thus resulting in a higher mitigation of the PIIN. Theoretical results show that DSBD demonstrate noticeable improvement over traditional balanced detection technique, for example an up to 33% increase in the number of active users can be achieved, and at least 1 × 10−3 b/s Hz increase in the spectral efficiency is obtained. However, the SDBD is more complex and append more constrains on system components.  相似文献   

14.
All-optical clock recovery (CR) from 20 Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals are demonstrated experimentally by using a polarization-maintaining fiber loop mirror filter (PMF-LMF) and a semiconductor optical amplifier (SOA) fiber ring laser. Only by adjusting polarization controller (PC), NRZ-DPSK signals were conveniently and fast converted to pseudo return-to-zero (PRZ) signal via PMF-LMF. Then the PRZ signals are injected into the SOA fiber laser for CR. The recovered clock signals is with the extinction ratio (ER) of 10 dB and the root-mean-square (RMS) timing jitter of 750 fs in 231 − 1 long pseudorandom binary sequence (PRBS) NRZ-DPSK signals measurement. Moreover, the broad wavelength tunability of recovered clock stemmed from the use of SOAs as modulator and the gain medium are shown too.  相似文献   

15.
Different modulation modes of DPSK and OOK are separately employed in the upstream and downstream link, after the comparison with different modulation formats in the downstream including the codes of non return-to-zero (NRZ), return-to-zero (RZ) and inverse return-to-zero (IRZ), the symmetric rate of 10 Gbps with 20 km transmission is realized without the dispersion compensation. It can be shown that in the combined modulation mode with the downstream of IRZ code, higher extinction ratio in the downstream and better performance of dispersion tolerance in the upstream could be achieved, enhancing the overall property of the transmission system.  相似文献   

16.
Surinder Singh  R.S. Kaler 《Optik》2007,118(2):74-82
We numerically simulated the ten channels at 10 Gb/s dense wavelength division multiplexing (DWDM) transmission faithfully over 17,227 km using 70 km span of single mode fiber (SMF) and dispersion compensating fiber (DCF) using optimum span scheme at channel spacing 20 GHz. For this purpose, inline optimized semiconductor optical amplifiers (SOAs) and DPSK format are used. We optimized the SOA parameters for inline amplifier with minimum crosstalk and amplified spontaneous emission noise with sufficient gain at bias current 400 mA. For this bias current, constant gain 36.5 dB is obtained up to saturation power 21.35 mW. We have also optimized the optical phase modulator bandwidth for 400 mA current which is around 5.5 GHz with crosstalk −14.2 dB between two channels at spacing 20 GHz.We show the 10×10 Gb/s transmission over 70 km distance with inline amplifier has good signal power received as compared to without amplifier, even at equal quality factor. We further investigated the optimum span scheme for 5670 km transmission distance for 10×10 Gb/s with channel spacing 20 at 5.5 GHz optical phase modulator bandwidth. As we increase the transmission distance up to 17,227 km, there is increase in power penalty with reasonable quality.The impact of optical power received and Q factor at 5670 and 17,227 km transmission distance for different span schemes for all channels has been illustrated. For launched optical power less than saturation, all channels are obtained at bit error rate floor of 10−10.  相似文献   

17.
Vishal Sharma  Amarpal Singh 《Optik》2010,121(14):1280-1284
In this paper, we investigate the impact of EDFA and SOA amplifiers over BER and Q-parameter of a Radio-over-Fiber (Rof) system consisting of two different system set-ups using direct- and external-laser modulation techniques. In this work, we also measured and compared the electric Rf power at receiver at different modulating Rf frequencies up to 20 GHz using two different optical amplifiers, i.e. EDFA and SOA. Further, we also compared the received electric Rf power at different optical powers without and with different optical amplifiers. An improvement of −11 dB (approx.) of received Rf power was observed using EDFA with the external modulation technique, on comparing with direct modulation.  相似文献   

18.
A theoretical model for crosstalk in multichannel wavelength division multiplexing communication systems due to cross phase saturation in semiconductor optical amplifier structure is developed. This theoretical model is used to analyze the impact of the cross phase noise on the performance of semiconductor optical amplifiers in saturation region for WDM communication system by using differential phase shift modulation format. It is shown that by increasing the carrier life time, width and thickness while reducing the confinement factor, differential gain and bias current in the SOA structure mitigates the cross talk due to cross phase saturation. The impact of penalty and cross phase noise imposed on multichannel WDM links have been investigated for different parameters of the SOA with the variation in transmission distance. With the slight increase in differential gain of 200.2 × 10−18 cm2 and confinement factor 0.41, the maximum transmission distance observed is 5220 km with good quality and nil power penalty for 10 × 40 Gb/s soliton RZ-DPSK WDM signals for the first time.  相似文献   

19.
In order to study the effect of titanium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with titanium ions with fluence ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc (MEVVA) source at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zirconium in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zirconium implanted with titanium ions. The larger the fluence, the better is the corrosion resistance of implanted sample. Finally, the mechanism of the corrosion behavior of titanium-implanted zirconium was discussed.  相似文献   

20.
In order to study the effect of copper ion implantation on the aqueous corrosion behavior, samples of zircaloy-4 were implanted with copper ions with fluences ranging from 1 × 1016 to 1 × 1017 ions/cm2, using a metal vapor vacuum arc source (MEVVA) operated at an extraction voltage of 40 kV. The valence states and depth distributions of elements in the surface layer of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES), respectively. Glancing angle X-ray diffraction (GAXRD) was employed to examine the phase transformation due to the copper ion implantation. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted zircaloy-4 in a 1 M H2SO4 solution. It was found that a significant improvement was achieved in the aqueous corrosion resistance of zircaloy-4 implanted with copper ions when the fluence is smaller than 5 × 1016 ions/cm2. The corrosion resistance of implanted samples declined with increasing the fluence. Finally, the mechanism of the corrosion behavior of copper-implanted zircaloy-4 was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号