首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
Five compounds of the composition Ln(2,2′-Bipy)(C4H8NCS2)3 · 0.5CH2Cl2 (Ln = Sm (I), Eu (II), Tb (III), Dy (IV), and Tm (V); 2,2′-Bipy = 2,2′-bipyridine) are synthesized. According to the X-ray diffraction data (CIF file CCDC 986259), the crystal structure of compound I consists of molecules of the mononuclear complex [Sm(2,2′-Bipy)(C4H8NCS2)3] and solvate molecules CH2Cl2 (2 : 1). The coordination polyhedron N2S6 of the Sm atom is a distorted tetragonal antiprism. The X-ray diffraction analysis shows that compounds I–V are isostructural. The magnetic properties of compounds I–V are analyzed in the temperature range from 2 to 300 K. At 300 K compounds I and III are photoluminescent in the visible spectral range. The photoluminescence intensity of compound I considerably exceeds that of complex III.  相似文献   

2.
Reactions of Ni(NO3)2 · 6H2O) in EtOH(iso-PrOH) with optically active bis(menthane) ethylene-diaminodioxime (H2L1), pinano-para-menthane ethylenediaminodioxime (H2L2), pinano-para-menthane propylenediaminodioxime (H2L3) and bis(pinane) propylenediaminodioxime (H2L4) were used to synthesize [Ni(H2L1)NO3[NO3 · 2H2O (I), [Ni(HL2)]NO3 (II), [Ni(HL3)]NO3 (III), and [Ni(HL4)]NO3 (IV). X-ray diffraction study of paramagnetic complex Ieff = 3.04 μB and diamagnetic complexes II and III revealed their ionic structures. A distorted octahedral polyhedron N4O2 in the cation of complex I is formed by the N atoms of tetradentate cycle-forming ligand, i.e., the H2L1 molecule, and the O atoms of the NO 3 ? anion acting as a bidentate cyclic ligand. In the cations of complexes II and III, containing a pinane fragment, the coordination core NiN4 has the shape of a distorted square formed on coordination of tetradentate cycle-forming ligands, i.e., anions of the starting dioximes. The structure of diamagnetic complex IV is likely to be similar to the structures of complexes II and III.  相似文献   

3.
Tris(5-bromo-2-methoxyphenyl)antimony bis(monohaloacetates) [(5-Br)(2-MeO)C6H3]3Sb[OC(O)CH2X]2, X = Cl (I), Br (II), I (III) have been synthesized by the reaction of tris(5-bromo-2-methoxyphenyl)antimony with chloro-, bromo-, and iodoacetic acids in the presence of hydrogen peroxide. According to X-ray analysis the antimony atom in I–III has a distorted trigonal-bipyramidal coordination.  相似文献   

4.
The molecular geometries of the complexes trans-[M(18-crown-6)(C5HO2F6)2] (where M = Ca, Sr, Ba (I), Zn, Cd, Sn, Pb (II), Fe, Co, Eu, and Yb) were modeled by the molecular mechanics method with fixed R(M-O) distances. The shielding degrees of the central metal atom in these complexes were calculated and the number and types of possible intermolecular contacts between their molecules in the structure were determined. The intermolecular interactions involve identical fragments (atoms) of the ligands: the CF3 groups of the hexafluoroacetylacetonate ligands and the methylene fragments of the crown ether. Previously unknown complex II and complex I were synthesized according to an original procedure. The structure and thermochemical properties (including sublimation by the Knudsen method) of complex II were studied. As in complex I, the metal cation in complex II is in the cavity of the macrocycle of the crown ether; the hexafluoroacetylacetonate ligands are trans relative to that cation. The presumed similarity of complexes I and II in thermochemical characteristics was confirmed experimentally. Both the complexes melt in close temperature intervals and sublime at the same temperature (~10?2 mm Hg) without decomposition. The enthalpies of sublimation of complexes I and II, as well as the entropy contributions to their volatilities, are equal to within the experimental error.  相似文献   

5.
A series of new tin(IV) complexes based on 2-hydroxy-3,6-di-tert-butyl-para-benzoquinone (LH) of the general formula L2SnR2 (R = Me (I), Et (II), Bu n (III), Ph (IV)) and LSnMe3 (V) were synthesized. The obtained compounds were characterized by IR and 1H, 13C and 119Sn NMR spectroscopy and elemental analysis. The X-ray diffraction analysis was carried out for complexes L2Sn(Bu n )2 (III) and LSnMe3 (V). The low-frequency region of the IR spectra, which has not earlier been studied in detail, was interpreted for compounds I–V and previously described complex LSnPh3 (VI). The electrochemical properties of LH and related tin complexes I–VI were studied. The nature of the hydrocarbon groups at the metal atom affects the stability of the intermediates formed in the electrochemical reactions.  相似文献   

6.
The thermal decomposition reactions of CH3CH2C(CH3)2COOAg (1), (CH3)3SiCH2COOAg (2), CF3COOAg (3), (CH3)3CCOOAg (4), C2H5COOAg (5), C3F7COOAg (6), C6F13COOAg (7) and (CF2)3(COOAg)2 (8) were studied in N2 atmosphere using thermogravimetry (TG), derivative thermogravimetry and differential thermal analysis. Characterized compounds decomposed in one- or multi-step processes with metallic silver formation in the range 215–465 °C. TG-IR studies of gases evolved during thermolysis revealed products of decomposition, such as carboxylic acids, CO2 and recombination reactions.  相似文献   

7.
The electrochemical transformations and antiradical activity of trialkylantimony(V) o-amidophenolate derivatives, (AP)SbR3 (AP = 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolate); R = CH3 (I), C2H5 (II), and C6H11 (III), are studied. The electrochemical oxidation of compounds IIII proceeds successively to form mono- and dicationic forms of the complexes. The presence of the donor hydrocarbon groups at the antimony(V) atom shifts the oxidation potentials to the cathodic range and decreases the stability of the monocationic complexes formed in electrochemical oxidation. The second anodic process is irreversible and accompanied by o-iminoquinone decoordination. The antiradical activity of compounds IIII is studied in the reaction with the diphenylpicrylhydrazyl radical and oleic acid autooxidation. The values obtained for indices EC50 and IC50 indicate the antiradical activity of the studied compounds. Complexes IIII were found to be the efficient inhibitors of oleic acid oxidation and act as efficient destructors of hydroperoxides.  相似文献   

8.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

9.
New ferrocenecarboxylates of rare-earth metals, [Ln2(μ-O,η2-OOCFc)22-O,O′-OOCFc)22-NO3)2(DMSO)4] (Ln = Gd (I), Tb (II), and Y (III)) and [Gd2(μ-O,η2-OOCFc)22-OOCFc)4(DMSO)2(H2O)2] · 2DMSO · 2CH2Cl2 (IV), are synthesized and characterized by X-ray diffraction analysis. Unlike all earlier known ferrocenecarboxylates of rare-earth metals, in isostructural compounds I–III the Ln atoms are linked by four bridging carboxyl residues, two of which are chelate-bridging (the coordination number of Ln is 9). Binuclear structure IV is formed by two chelate-bridging carboxylate ligands (the coordination number of Gd is 9). Weak antiferromagnetic and weak ferromagnetic interactions between the Gd atoms are observed in complexes I and IV, respectively. The thermal decomposition of the synthesized compounds is studied by differential scanning calorimetry and thermogravimetry. According to the X-ray diffraction data, the final thermolysis products of the complexes in air are garnets Ln3Fe5O12.  相似文献   

10.
The reactions of the octahedral anionic complexes [Re6Q7Br7]3? (Q = S, Se) with lanthanide bromides in DMF were studied. The reactions gave a series of compounds [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) containing [Ln(DMF)8]3+ complex cations. The compounds were studied by single-crystal and powder X-ray diffraction and thermal analyses. The crystal structures of [Ln(DMF)8][Re6S7Br7] with Ln = La (I), Ce (II), Nd (III), Eu (IV), and Lu (V) and [Ln(DMF)8][Re6Se7Br7] with Ln = La (VI), Ce (VII), Pr (VIII), and Lu (IX) were determined. It was found that [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) can be divided into three structural groups: I, II, and VI (type A), VII (type B), and III–V, VIII, IX (type C). The complex [Pr(DMF)8][Re6Se7Br7] was found to crystallize in two polymorphous modifications with type B and C structures. Presumably, the morphotropic transitions in the [Ln(DMF)8][Re6Q7Br7] series (Q = S, Se) are mainly related to the change in the configuration of the [Ln(DMF)8]3+ cations, resulting in a change in the packing motif of large complex ions in the crystals. The compounds [Ln(DMF)8][Re6Se7Br7] decompose according to a stepwise pattern, which suggests an intermediate formation of the complexes [Ln(DMF)6][Re6Se7Br7] (this was proved for Ln = Yb, Lu) with subsequent more extensive transformations, which affect also the cluster anion.  相似文献   

11.
Three new Cu(II)-Ln(III) heterometallic coordination polymers based on two N-heterocyclic carboxylic ligands, {[LnCu(L1)2(L2)(H2O)2]·mH2O} n (Ln = La(1), Nd(2), Gd(3), m = 2 (for 1), 1 (for 2, 3), H2L1 = quinolinic acid, HL2 = nicotinic acid), have been synthesized and characterized. 1 has a two-dimensional (2D) layer structure with a Schl?fli symbol of (44.62), while complexes 2 and 3 are isostructural and have three-dimensional (3D) structures with a Schl?fli symbol of (3.4.5)2(32.42.52.614.74.83.9)(32.63.7) of 3-nodal net. Magnetic investigations suggest that antiferromagnetic coupling exists between NdIII and CuII in 2, while weak ferromagnetic coupling between GdIII and CuII in 3. The difference of magnetic properties between 2 and 3 has been discussed.  相似文献   

12.
Heating of the compounds (RC5H4)Fe(CO)2TePh (R = H (I) and Me (II)) in heptane afforded the dinuclear complexes [(RC5H4)Fe(CO)TePh]2 (III and IV, respectively). By oxidation with Fc+PF 6 ? , these complexes were transformed into the paramagnetic cationic complexes [(RC5H4)Fe(CO)TePh]2PF6 (V and VI, respectively). Structures III–V and [(C5H5)Fe(CO)SPh]2PF6 (VII) were characterized by X-ray diffraction.  相似文献   

13.
Four new fluorochromatouranylates, namely, K[UO2(CrO4)F] · 1.5H2O (I), Rb[UO2(CrO4)F] · 1.5H2O (II), Rb[UO2(CrO4)F] · 0.5H2O (III), and Cs[UO2(CrO4)F] · 0.5H2O (IV), have been synthesized, and their crystallographic characteristics have been determined. All the compounds crystallize in monoclinic system, space group P21/c, with the unit cell parameters a = 13.1744(5) Å, b = 9.4598(3) Å, c = 13.0710(4) Å, β = 103.746(1)°, Z = 4, R = 0.0235 (I); a = 13.5902(7) Å, b = 9.5022(4) Å, c = 13.2271(6) Å, β = 102.914(2)°, Z = 4, R = 0.0247 (II); a = 24.7724(8) Å, b = 12.6671(4) Å, c = 9.4464(3) Å, β = 97.661(1)°, Z = 8, R = 0.0448 (III); a = 25.725(1) Å, b = 12.8261(5) Å, c = 9.4929(4) β = 97.208(1)°, Z = 8 (IV). The pairs of compounds I and II and compounds III and IV are isostructural. Crystals of compounds I–III have been subjected to complete X-ray diffraction study. It has been established that the structures of compounds I–III are built of [UO2(CrO4)F] n n? layers, which are parallel to the (100) plane and linked into a framework by alkali-metal cations located between layers, together with water molecules. The effect of topological and geometric isomerism on the structural features of 34 known uranyl compounds of the AT3M2 crystallochemical group, to which the studied compounds I–III also belong, is discussed.  相似文献   

14.
Novel optical ligands bis(menthane) (H2L1), pinano-para-menthane (H2L2), and carano-para-menthane (H2L3) propylenediaminodioximes are obtained. Diamagentic Co(III) complexes of the composition Co(HL1)Cl2 (I), Co(HL2)Cl2 (II), Co(HL3)Cl2 (III), and Co(HL4)Cl2 · H2O(IV) are synthesized by reactions of CoCl2 with H2L1, H2L2, H2L3 and bis(carane) propylenediaminodioxime (H2L4) in ethanol in air. The crystal and molecular structures of compound I is determined by X-ray diffraction analysis. The crystals are monoclinic with the unit cell parameters a = 7.8385(3) Å, b = 11.4074(6) Å, c = 14.9509(6) Å, β = 104.278(2)°, V = 1295.57(10) Å3, Z = 2, ρ(calcd) = 1.367 g/cm3, F(000) = 564, M = 533.41, space group P21. The crystal structure of complex I consists of individual mononuclear molecules. The Co3+ ion coordinates four N atoms of tetradentate cycle-forming anionic ligand and two Cl atoms. The coordination polyhedron of Cl2N4 is a distorted octahedron. The 13C and 1H NMR spectra of the complexes synthesized confirm coordination of four N atoms of a ligand.  相似文献   

15.
The packings of the crystal structures of the gold(III) iodide, perchlorate, and hexafluorophosphate complexes with the iminate-amine ligand, [Au(C9H19N4)]Y2 (Y = I (I), ClO4 (II), and PF6 (III)), are studied in comparison. The packings of structures I–III are similar. They are determined and stabilized by a vast network of intermolecular interactions (hydrogen bonds N-H…A, C-H…A, C-H…Au, and C-H…π and short contacts Au…A (A = I, O, F)). Structures I–III are characterized by cation-cationic and cationanionic infinite chains and closed rings formed by classical and nonclassical hydrogen bonds and contacts. The structures include multicentered hydrogen bonds. The replacement of the anion does not basically change the packing structures.  相似文献   

16.
(A), (B) and (C) were prepared by solid state reactions. Single crystals of quenched samples were examined by X-ray investigation. On the opposite of A2TiO5-pseudobrookite compounds (A), (B) and (C) crystallize with a high ordered metaldistribution on the point positions 4c and 8f.  相似文献   

17.
The reaction of triphenylantimony with propiolic acid in the presence of hydrogen peroxide (molar ratios 1 : 2 : 1 and 1 : 1 : 1) in diethyl ether affords triphenylantimony dipropiolate Ph3Sb[OC(O)C≡CH]2 (I) and μ2-oxobis[(propiolato)triphenylantimony] [Ph3SbOC(O)C≡CH]2O (II). Tetraphenylantimony propiolate Ph4SbOC(O)C≡CH (III) is synthesized from pentaphenylantimony and propiolic or acetylenedicarboxylic acid in toluene. According to the X-ray diffraction data, the crystals of compounds I and III include two types of crystallographically independent molecules (a and b). The antimony atoms in molecules Ia, Ib, II, IIIa, and IIIb have the trigonal-bipyramidal coordination mode with different degrees of distortion. The OSbO and OSbC axial angles are 176.8(2)° (Ia, Ib), 170.17(15)°, 178.78(14)° (II), and 173.2(5)°, 174.4(5)° (IIIa, IIIb). The CSbC equatorial angles lie in the ranges 108.2(3)°–143.1(3)° (I), 109.0(2)°–131.0(2)° (II), and 113.1(4)°–125.4(4)° (III). The SbOSb angle in II is 141.55(19)°. The Sb-C bond lengths are 2.103(8)–2.141(5) (I), 2.105(5)–2.119(5) (II), and 2.076(12)–2.166(13) Å (III). The Sb-O distances increase in a series of I, II, and III: 2.139(6)–2.156(7) (Ia, Ib); 2.206(4), 2.218(3) (II); and 2.338(10), 2.340(10) Å (III).  相似文献   

18.
To explore the influence of bulky backbone on complexes, three Co(II) and Zn(II) complexes with phenanthrene-9-carboxylate (L1), 9H-fluorene-9-carboxylate (L2) or biphenyl-4-carboxylate (L3) together with incorporating auxiliary bridging ligad 4,4′-bipyridine (4Bipy), were synthesized and characterized: [Co(L1)2(4Bipy)(H2O)2] (I), [Zn(L2)2(4Bipy)0.5(4Bipy)0.5] (II), and [Zn3(L3)4(4Bipy)0.5(4Bipy)0.5(4Bipy)0.5(OH)2] (III). X-ray single-crystal diffraction analyses show that complexes IIII both assume one-dimensional (1D) structures by incorporating the bridging 4Bipy (CIF file CCDC nos. 942729 (I), 942727 (II), and 942733 III). In I, mononuclear six-coordinated Co2+ ions are linked into a 1D linear chain by 4Bipy. While in II, mononuclear four-coordinated Zn2+ ions are linked into a 1D zigzag chain by 4Bipy. But in III, because of the existence of OH?, hexanuclear Zn(II) can be regarded as a node, then bridge adjacent hexanuclear Zn(II) nodes by almost parallelled three 4Bipy ligands into a 1D linear chain. Finally the 1D chains of I–III are further assembled into an overall three-dimensional (3D) framework via intermolecular H-bonding, π…π stacking, and/or C-H…π supramolecular interactions, respectively. The results indicate that, besides different metal ions Co2+ and Zn2+ or OH? anions, the steric hindrance of backbone ligands play an important role in the formation of I–III. Moreover, the luminescent properties of corresponding ligands and their complexes were briefly investigated.  相似文献   

19.
The ion mobility in new fluoride glasses (mol %) 45ZrF4 · 25BiF3 · 30MF (I) (M = Li, Na, K), (70 - x)ZrF4 · xBiF3 · 30LiF (II) (15 ≤ x ≤ 35), and 45ZrF4 · (55-x)BiF3 · xMF (III) (M = Li, Na; 10 ≤ x ≤ 30) has been studied by 7Li, 19F, and 23Na NMR in the temperature range 250–500 K. The character of ion motion in bismuth fluorozirconate glasses I and III is determined by temperature and the nature and concentration of an alkali-metal cation. Major type of ion mobility in glasses I–III at temperature 400–440 K are local motions of fluorine-containing moieties and diffusion of lithium ions (except for the glass with x = 10). The factors responsible for diffusion in the fluoride sublattice of glasses I have been determined. Sodium ions in glasses I and III are not involved in ion transport.  相似文献   

20.
The reactions of pentaphenylantimony with succinic, malic, and tartaric acids (mole ratio 2: 1) in toluene afford bis(tetraphenylantimony) succinate (I), malate (II), and tartrate (III) in yields of 98, 92, and 94%, respectively. According to the X_ray diffraction analysis results, molecules I and II are centrosymmetric. In compound II, the hydroxy group in the acid residue is disordered over two positions. Crystal III includes two types of crystallographically independent molecules (a and b). The antimony atoms in compounds I, II, IIIa, and IIIb have distorted trigonal bipyramidal coordination modes. The axial angles CaxSbOax are 166.80(8)° (I); 174.8(2)° (II); 176.4(4)°, 177.4(3)° (IIIa); and 173.3(4)°, 172.7(4)° (IIIb). The equatorial angles CeqSbCeq vary in the ranges 99.3(1)°–154.5(1)° (I); 115.2(2)°–123.3(2)° (II); 115.7(4)°–123.3(4)° 115.2(5)°–125.6(5)° (IIIa); and 107.9(4)°-129.1(4)°, 113.7(4)°-124.8(5)° (IIIb). The Sb-C and Sb-O bonds are 2.138(3)-2.176(3), 2.319(2) Å (I); 2.111(6)–2.163(5), 2.243(4) Å (II); 2.072(13)–2.169(11), 2.252(7), 2.284(7) Å (IIIa); and 2.047(11)–2.190(11), 2.224(7), 2.256(7) Å (IIIb). The intramolecular distances Sb…O=C are 2.528(3) (I); 3.267(7) (II); 3.381(7), 3.436(7) (IIIa); and 3.351(7), 3.162(7) Å (IIIb). For structures I, II, and III, the CIF files are CCDC 929151, 941542, and 941543, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号