首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper the vanishing Debye length limit of the bipolar time-dependent drift-diffusion-Poisson equations modelling insulated semiconductor devices with p-n junctions (i.e., with a fixed bipolar background charge) is studied. For sign-changing and smooth doping profile with ‘good’ boundary conditions the quasineutral limit (zero-Debye-length limit) is performed rigorously by using the multiple scaling asymptotic expansions of a singular perturbation analysis and the carefully performed classical energy methods. The key point in the proof is to introduce a ‘density’ transform and two λ-weighted Liapunov-type functionals first, and then to establish the entropy production integration inequality, which yields the uniform estimate with respect to the scaled Debye length. The basic point of the idea involved here is to control strong nonlinear oscillation by the interaction between the entropy and the entropy dissipation.  相似文献   

2.
 The combined quasineutral and relaxation time limit for a bipolar hydrodynamic model is considered. The resulting limit problem is a nonlinear diffusion equation describing a neutral fluid. We make use of various entropy functions and the related entropy productions in order to obtain strong enough uniform bounds. The necessary strong convergence of the densities is obtained by using a generalized version of the “div-curl” Lemma and monotonicity methods.  相似文献   

3.
We study the pressureless gas equations, with piecewise constant initial data. In the immediate solution, δ-shocks and contact vacuum states arise and even meet (interact) eventually. A solution beyond the “interaction” is constructed. It shows that the δ-shock will continue with the velocity it attained instantaneously before the time of interaction, and similarly, the contact vacuum state will move past the δ-shock with a velocity value prior to the interaction. We call this the “no-effect-from-interaction” solution. We prove that this solution satisfies a family of convex entropies (in the Lax’s sense). Next, we construct an infinitely large family of weak solutions to the “interaction”. Suppose further that any of these solutions satisfy a convex entropy, it is necessary and suffcient that these solutions reduce to only the “no-effect-from-interaction” solution. In [1], Bouchut constructed another entropy satisfying solution. As with other previous papers, it is obvious that it will not be sufficient that a “correct” solution satisfies a convex entropy, in a non-strictly hyperbolic conservation laws system. Research done in the University of Michigan-Ann Arbor, submission from Temasek Laboratories, National University of Singapore.  相似文献   

4.
We consider in this paper the relativistic Euler equations in isentropic fluids with the equation of state p = κ2ρ, where κ, the sound speed, is a constant less than the speed of light c. We discuss the convergence of the entropy solutions as c→∞. The analysis is based on the geometric properties of nonlinear wave curves and the Glimm’s method.  相似文献   

5.
In this paper we study the existence of global solutions to the Euler equations of compressible isothermal gas dynamics with semiconductor devices. We construct the approximate solutions by Lax–Friedrichs scheme. The convergence and consistency are obtained by using the compensated compactness framework for γ = 1. The global entropy solutions in L are obtained. We deal with the initial data containing unbounded velocity which is different from the isentropic case. Received: November 18, 2003  相似文献   

6.
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to show the existence and the uniqueness of a solution in the L framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].  相似文献   

7.
In this paper, we establish rectifiability of the jump set of an S 1–valued conservation law in two space–dimensions. This conservation law is a reformulation of the eikonal equation and is motivated by the singular limit of a class of variational problems. The only assumption on the weak solutions is that the entropy productions are (signed) Radon measures, an assumption which is justified by the variational origin. The methods are a combination of Geometric Measure Theory and elementary geometric arguments used to classify blow–ups.?The merit of our approach is that we obtain the structure as if the solutions were in BV, without using the BV–control, which is not available in these variationally motivated problems. Received June 24, 2002 / final version received November 12, 2002?Published online February 7, 2003  相似文献   

8.
We consider the XY quantum spin chain in a transverse magnetic field. We consider the Rényi entropy of a block of neighboring spins at zero temperature on an infinite lattice. The Rényi entropy is essentially the trace of some power α of the density matrix of the block. We calculate the entropy of the large block in terms of Klein’s elliptic λ-function. We study the limit entropy as a function of its parameter α. We show that the Rényi entropy is essentially an automorphic function with respect to a certain subgroup of the modular group. Using this, we derive the transformation properties of the Rényi entropy under the map α → α −1 .  相似文献   

9.
 We study the semi-classical limit of the dynamic of electrons in a stratified medium. The medium is assumed to be periodic in one direction and slowly varying in the other directions. In this case, a small parameter ɛ is introduced and corresponds both to the Planck constant and to scaled lattice thickness. The limit behavior is studied by means of Wigner measures. The limit process is described by infinitely many transport (Vlasov) equations. (Received 5 May 1999; in revised from 18 November 1999)  相似文献   

10.
We discuss a model limit problem which arises as a first step in the mathematical justification of our Boussinesq-type approximation [4], which takes into account dissipative heating in natural convection. We treat a simplified highly non linear system depending on a (perturbation) parameter ε. The main difficulty is that for ε ≠ 0 the velocity is not solenoidal. First we prove that our system has weak solutions for each fixed ε. Moreover, while the chosen perturbation parameter ε tends to zero we show, that we arrive at the usual incompressible case and the standard Boussinesq approximation.  相似文献   

11.
The system of equations (f (u))t − (a(u)v + b(u))x = 0 and ut − (c(u)v + d(u))x = 0, where the unknowns u and v are functions depending on , arises within the study of some physical model of the flow of miscible fluids in a porous medium. We give a definition for a weak entropy solution (u, v), inspired by the Liu condition for admissible shocks and by Krushkov entropy pairs. We then prove, in the case of a natural generalization of the Riemann problem, the existence of a weak entropy solution only depending on x/t. This property results from the proof of the existence, by passing to the limit on some approximations, of a function g such that u is the classical entropy solution of ut − ((cg + d)(u))x = 0 and simultaneously w = f (u) is the entropy solution of wt − ((ag + b)(f(−1)(w)))x = 0. We then take v = g(u), and the proof that (u, v) is a weak entropy solution of the coupled problem follows from a linear combination of the weak entropy inequalities satisfied by u and f (u). We then show the existence of an entropy weak solution for a general class of data, thanks to the convergence proof of a coupled finite volume scheme. The principle of this scheme is to compute the Godunov numerical flux with some interface functions ensuring the symmetry of the finite volume scheme with respect to both conservation equations.  相似文献   

12.
 Let , and let α be an expansive -action by continuous automorphisms of a compact abelian group X with completely positive entropy. Then the group of homoclinic points of α is countable and dense in X, and the restriction of α to the α-invariant subgroup is a -action by automorphisms of . By duality, there exists a -action by automorphisms of the compact abelian group : this action is called the adjoint action of α. We prove that is again expansive and has completely positive entropy, and that α and are weakly algebraically equivalent, i.e. algebraic factors of each other. A -action α by automorphisms of a compact abelian group X is reflexive if the -action on the compact abelian group adjoint to is algebraically conjugate to α. We give an example of a non-reflexive expansive -action α with completely positive entropy, but prove that the third adjoint is always algebraically conjugate to . Furthermore, every expansive and ergodic -action α is reflexive. The last section contains a brief discussion of adjoints of certain expansive algebraic -actions with zero entropy. Received 11 June 2001; in revised form 29 November 2001  相似文献   

13.
 Inspired by [17], we develop an orbital approach to the entropy theory for actions of countable amenable groups. This is applied to extend – with new short proofs – the recent results about uniform mixing of actions with completely positive entropy [17], Pinsker factors and the relative disjointness problems [10], Abramov–Rokhlin entropy addition formula [19], etc. Unlike the cited papers our work is independent of the standard machinery developed by Ornstein–Weiss [14] or Kieffer [12]. We do not use non-orbital tools like the Rokhlin lemma, the Shannon–McMillan theorem, castle analysis, joining techniques for amenable actions, etc. which play an essential role in [17], [19] and [10]. (Received 23 October 2000)  相似文献   

14.
Summary.   We prove hydrodynamical limit for spatially heterogeneous, asymmetric simple exclusion processes on Z d . The jump rate of particles depends on the macroscopic position x through some nonnegative, smooth velocity profile α(x). Hydrodynamics are described by the entropy solution to a spatially heterogeneous conservation law of the form
To derive this result, we prove an alternative characterization of entropy solutions involving stationary solutions, and work with macroscopically stationary states rather than the unknown stationary measures of the process. The method can be extended to spatially heterogeneous, asymmetric misanthrope processes with slow birth and death. Received: 11 November 1996/In revised form: 10 October 1997  相似文献   

15.
We deal with positive solutions of Δu = a(x)u p in a bounded smooth domain subject to the boundary condition ∂u/∂v = λu, λ a parameter, p > 1. We prove that this problem has a unique positive solution if and only if 0 < λ < σ1 where, roughly speaking, σ1 is finite if and only if |∂Ω ∩ {a = 0}| > 0 and coincides with the first eigenvalue of an associated eigenvalue problem. Moreover, we find the limit profile of the solution as λ → σ1. Supported by DGES and FEDER under grant BFM2001-3894 (J. García-Melián and J. Sabina) and ANPCyT PICT No. 03-05009 (J. D. Rossi). J.D. Rossi is a member of CONICET.  相似文献   

16.
We analyse the large-time asymptotics of quasilinear (possibly) degenerate parabolic systems in three cases: 1) scalar problems with confinement by a uniformly convex potential, 2) unconfined scalar equations and 3) unconfined systems. In particular we are interested in the rate of decay to equilibrium or self-similar solutions. The main analytical tool is based on the analysis of the entropy dissipation. In the scalar case this is done by proving decay of the entropy dissipation rate and bootstrapping back to show convergence of the relative entropy to zero. As by-product, this approach gives generalized Sobolev-inequalities, which interpolate between the Gross logarithmic Sobolev inequality and the classical Sobolev inequality. The time decay of the solutions of the degenerate systems is analyzed by means of a generalisation of the Nash inequality. Porous media, fast diffusion, p-Laplace and energy transport systems are included in the considered class of problems. A generalized Csiszár–Kullback inequality allows for an estimation of the decay to equilibrium in terms of the relative entropy. (Received 11 October 2000; in revised form 13 March 2001)  相似文献   

17.
We derive lower bounds on asymptotic support propagation rates for strong solutions of the Cauchy problem for the thin-film equation. The bounds coincide up to a constant factor with the previously known upper bounds and thus are sharp. Our results hold in case of at most three spatial dimensions and n∈(1,2.92)n(1,2.92). The result is established using weighted backward entropy inequalities with singular weight functions to yield a differential inequality; combined with some entropy production estimates, the optimal rate of propagation is obtained. To the best of our knowledge, these are the first lower bounds on asymptotic support propagation rates for higher-order nonnegativity-preserving parabolic equations.  相似文献   

18.
In this work we consider the behaviour for large values of p of the unique positive weak solution u p to Δ p u = u q in Ω, u = +∞ on , where q > p − 1. We take q = q(p) and analyze the limit of u p as p → ∞. We find that when q(p)/pQ the behaviour strongly depends on Q. If 1 < Q < ∞ then solutions converge uniformly in compacts to a viscosity solution of with u = +∞ on . If Q = 1 then solutions go to ∞ in the whole Ω and when Q = ∞ solutions converge to 1 uniformly in compact subsets of Ω, hence the boundary blow-up is lost in the limit.  相似文献   

19.
We modify and extend proofs of Serrin’s symmetry result for overdetermined boundary value problems from the Laplace-operator to a general quasilinear operator and remove a strong ellipticity assumption in Philippin (Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987), Longman Sci. Tech., Pitman Res. Notes Math. Ser., Harlow, 175, pp. 34–48, 1988) and a growth assumption in Garofalo and Lewis (A symmetry result related to some overdetermined boundary value problems, Am. J. Math. 111, 9–33, 1989) on the diffusion coefficient A, as well as a starshapedness assumption on Ω in Fragalà et al. (Overdetermined boundary value problems with possibly degenerate ellipticity: a geometric approach. Math. Zeitschr. 254, 117–132, 2006).  相似文献   

20.
For the case of the adiabatic exponents being larger than , we establish the global existence of entropy weak solutions of the Cauchy problem to the bipolar hydrodynamic model for semiconductors. Using the theory of compensated compactness, we hence give finally a complete answer on the related existence problems with the -law pressure relation. A new kind of singular limit of the modified entropy weak solution is discussed. To some extent, the limit of this sort can provide some information about the uniform boundedness of the scaled solution sequences. The quasineutral-relaxation limit of the entropy weak solutions is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号