首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kinetics of the reaction of Cl atoms with methanol has been investigated at 2 Torr total pressure of helium and over a wide temperature range 225-950 K, using a discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer. The rate constant of the reaction Cl + CH3OH → products (1) was determined using both absolute measurements under pseudo-first order conditions, monitoring the kinetics of Cl-atom consumption in excess of methanol and relative rate method, k1 = (5.1 ± 0.8) × 10−11 cm3 molecule−1 s−1, and was found to be temperature independent over the range T = 225-950 K. The rate constant of the reaction Cl + Br2 → BrCl + Br (3) was measured in an absolute way monitoring Cl-atom decays in excess of Br2: k3 = 1.64 × 10−10 exp(34/T) cm3 molecule−1 s−1 at T = 225-960 K (with conservative 15% uncertainty). The experimental data for k3 can also be adequately represented by the temperature independent value of k3 = (1.8 ± 0.3) × 10−10 cm3 molecule−1 s−1. The kinetic data from the present study are compared with previous measurements.  相似文献   

2.
The kinetics of the reaction of F atom with HNO3, source of NO3 radicals widely used in laboratory studies, has been investigated at nearly 2.7 mbar total pressure of helium over a wide temperature range, T = 220-700 K, using a low-pressure discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer. The rate constant of the reaction F + HNO3 → NO3 + HF (1) was determined using both relative rate method and absolute measurements under pseudo–first-order conditions, monitoring the kinetics of F-atom consumption in excess of HNO3, k1 = (8.2 ± 0.4) × 10−12 exp((315 ± 15)/T) cm3 molecule−1 s−1 (where the uncertainties represent precision at the 2σ level, the estimated total uncertainty on k1 being 15% at all temperatures). The reaction rate constant was found to be in excellent agreement with the only previous temperature-dependent study. Experiments on detection of the reaction product, HF, have shown that NO3 and HF forming channel of the title reaction is the dominant, if not unique, on the whole temperature range of the study.  相似文献   

3.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998  相似文献   

4.
The kinetics of the reaction of H-atom with carbonyl sulfide (OCS) has been investigated at nearly 2 Torr total pressure of helium over a wide temperature range, T = 255–960 K, using a low-pressure discharge flow reactor combined with an electron impact ionization quadrupole mass spectrometer. The rate constant of the reaction H + OCS → SH + CO (1) was determined under pseudo-first order conditions, monitoring the kinetics of H-atom consumption in excess of OCS, k1 = 6.6 × 10−13 × (T/298)3 × exp(−1150/T) cm3 molecule−1 s−1 (with estimated total uncertainty on k1 of 15% at all temperatures). Current measurements of k1 at intermediate temperatures (520–960 K) appear to reconcile previous high and low temperature data and allow the above expression for k1 to be recommended for use in the extended temperature range between 255 and 1830 K with a conservative uncertainty of 20%.  相似文献   

5.
The kinetics of the reactions OH + Br2 → HOBr + Br (1) and OD + Br2 → DOBr + Br (3) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expressions were obtained either from the kinetics of product formation (HOBr, DOBr) in excess of Br2 over OH and OD or from the kinetics of Br2 consumption in excess of OH and OD: k1 = (1.8 ± 0.3) × 10−11 exp [(235 ± 50)/T] and k3 = (1.9 ± 0.2) × 10−11 exp [(220 ± 25)/T] cm3 molecule−1 s−1. For the reaction channels of the title reactions: OH + Br2 → BrO + HBr and OD + Br2 → BrO + DBr, the upper limits of the branching ratios were found to be 0.03 and 0.02 at T = 320 K, respectively. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 698–704, 1999  相似文献   

6.
Reactions of F2 molecules exhibit unusual features, manifesting in high reactivity of F2 with respect to some closed‐shell molecules and low reactivity toward chemically active species, such as halogen and oxygen atoms. The existing data base on the reactions of F2 being rather sparse, kinetic and mechanistic studies (preferably over a wide temperature range) are needed to better understand the nature of the specific reactivity of fluorine molecule. In the present work, reactions of F2 with Br atoms and Br2 have been studied for the first time in an extended temperature range using a discharge flow reactor combined with an electron impact ionization mass spectrometer. The rate constant of the reaction F2 + Br → F +BrF (1) was determined either from kinetics of the reaction product, BrF, formation or from the kinetics of Br consumption in excess of F2: k1 = (4.66 ± 0.93) × 10−11 exp(−(4584 ± 86)/T) cm3 molecule−1 s−1 at T = 300–940 K. The rate constant of the reaction F2 + Br2 → products (2), k2 = (9.23 ± 2.68) × 10−11 exp(−(8373 ± 194)/T) cm3 molecule−1 s−1, was determined in the temperature range 500–958 K by monitoring both reaction product (FBr) formation and F2 consumption kinetics in excess of Br2. The results of the experimental measurements of the yield of FBr (1.02 ± 0.07 at T = 960 K) combined with thermochemical calculations indicate that F+Br2F forming channel of reaction (2) is probably the dominant one, at least, at highest temperature of the study.  相似文献   

7.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

8.
The overall rate constants for H-abstraction (kH) from tetrahydrofuran and D-abstraction (kD) from fully deuterated tetrahydrofuran by chlorine atoms in the temperature range of 298-547 K were determined. In both cases, very weak negative temperature dependences of the overall rate constants were observed, described by the expressions: kH = (1.55 ± 0.13) × 10−10 exp(52 ± 28/T) cm3 molecule−1 s−1 and kD = (1.27 ± 0.25) × 10−10exp(55 ± 62/T) cm3 molecule−1 s−1. The experimental results show that the value of the kinetic isotope effect (kH/kD), amounting to 1.21 ± 0.10, is temperature independent at 298-547 K.  相似文献   

9.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

10.
The room temperature rate coefficient for the reaction Br+Br2O→Br2+BrO (3) has been measured using the technique of pulse-laser photolysis with long-path transient absorption detection of the BrO reaction product. A value of k3=(2.0±0.5)×10−10 cm3 molecule−1 s−1 was determined. The photolysis products of Br2O at 308 nm were also examined. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 571–576, 1998  相似文献   

11.
Rate coefficients for the reaction of OH with Cl2, (k1), Br2, (k2) and I2, (k3), were measured under pseudo‐first‐order conditions in OH. OH was produced by pulsed laser photolysis of H2O2 (or HNO3) and its temporal profile was monitored by laser‐induced fluorescence. The measured rate coefficients for k1 (231–354 K) and k2 (235–357 K) are: k1 (T) = (3.77 ± 1.02) × 10−12 exp[−(1228 ± 140)/T] cm3 molecule−1 s−1 k2 (T) = (1.98 ± 0.51) × 10−11 exp[(238 ± 70)/T] cm3 molecule−1 s−1 k3 was independent of temperature between 240 and 348 K with an average value of (2.10 ± 0.60) × 10−10 cm3 molecule−1 s−1. The quoted uncertainties are 2σ (95% confidence limits, 1σA = AσlnA) and include estimated systematic errors. Our measurements significantly im‐prove the accuracy of k1. This is the first report of a slight negative temperature dependence for k2 and of the temperature independence of k3. © 1999 John Wiley & Sons, Inc.* Int J Chem Kinet 31: 417–424, 1999  相似文献   

12.
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be kHCl(298 K) = (7.9 ± 1.3) × 10−13 cm3 molecule−1 s−1 with a weak positive temperature dependence, kHBr (298-460 K) = (1.04 ± 0.2) × 10−11 cm3 molecule−1 s−1, and kHI(298 K) = (3.0 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The homogeneous nature of these reactions has been experimentally tested.  相似文献   

13.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

14.
A low‐pressure discharge‐flow system equipped with laser‐induced fluorescence (LIF) detection of NO2 and resonance‐fluorescence detection of OH has been employed to study the self reactions CH2ClO2 + CH2ClO2 → products (1) and CHCl2O2 + CHCl2O2 → products (2), at T = 298 K and P = 1–3 Torr. Possible secondary reactions involving alkoxy radicals are identified. We report the phenomenological rate constants (kobs) k1obs = (4.1 ± 0.2) × 10−12 cm3 molecule−1 s−1 k2obs = (8.6 ± 0.2) × 10−12 cm3 molecule−1 s−1 and the rate constants derived from modelling the decay profiles for both peroxy radical systems, which takes into account the proposed secondary chemistry involving alkoxy radicals k1 = (3.3 ± 0.7) × 10−12 cm3 molecule−1 s−1 k2 = (7.0 ± 1.8) × 10−12 cm3 molecule−1 s−1 A possible mechanism for these self reactions is proposed and QRRK calculations are performed for reactions (1), (2) and the self‐reaction of CH3O2, CH3O2 + CH3O2 → products (3). These calculations, although only semiquantitative, go some way to explaining why both k1 and k2 are a factor of ten larger than k3 and why, as suggested by the products of reaction (1) and (2), it seems that the favored reaction pathway is different from that followed by reaction (3). The atmospheric fate of the chlorinated peroxy species, and hence the impact of their precursors (CH3Cl and CH2Cl2), in the troposphere are briefly discussed. HC(O)Cl is identified as a potentially important reservoir species produced from the photooxidation of these precursors. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 433–444, 1999  相似文献   

15.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

16.
A kinetic study of the reaction of the 4-methylphenyl radical (4-C6H4CH3) with the oxygen molecule was conducted using experimental and theoretical approaches. The absorption spectrum for the λ = 266 nm photolysis of the 4-C6H4CH3X (X = Cl, Br)/N2/O2 mixture was measured in the wavelength range of λ = 503-512 nm using N2 as the buffer gas at a total pressure of 40 Torr using a cavity ring-down spectroscopy apparatus coupled with a pulsed laser photolysis system. Based on the absorbance of the product of the 4-C6H4CH3 + O2 reaction at λ = 504 nm, the reaction rate coefficient for the 4-C6H4CH3 + O2 reaction was determined to be k = (1.21 ± 0.10) × 10−11 cm3 molecule−1 s−1 and k = (1.18 ± 0.21) × 10−11 cm3 molecule−1 s−1 using 4-C6H4CH3Cl and 4-C6H4CH3Br, respectively, as the radical precursor. And there was no pressure dependence in the total pressure range of 10-90 Torr varying partial pressure of N2 buffer gas at T = 296 ± 5 K. The geometries, vibration frequencies, and potential energy surfaces of the reactants, major products, and transition states in the 4-C6H4CH3 + O2 reaction were determined using the CBS-QB3 method. The k value at the high-pressure limit was calculated to be 1.26 × 10−11 cm3 molecule−1 s−1 using the variational transition-state theory. The calculated value of k was consistent with the experimental value, which indicated that the 4-C6H4CH3 + O2 reaction reaches the high-pressure limit at 10 Torr. Therefore, the oxidation of the 4-C6H4CH3 radical is almost 10 times faster than that of the benzyl radical, which has the same chemical formula, at the high-pressure limit.  相似文献   

17.
The spin-forbidden dissociation reaction of the N2O(X1Σ+) ground state has been investigated by both quantum calculations and experiments. Ab initio prediction at the CCSD(T)/CBS(TQ5)//CCSD(T)/aug-cc-pVTZ+d level of theory gave the crossing point (MSX) energy at 60.1 kcal/mol for the N2O(X1Σ+) → N2() + O(3P) transition, in good agreement with published data. The T- and P-dependent rate coefficients, k1(T,P), for the nonadiabatic thermal dissociation predicted by nonadiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) calculations agree very well with literature data. The rate constants at the high- and low-pressure limits, k1 = 1011.90 exp (−61.54 kcal mol−1/RT) s−1 and k1o = 1014.97 exp(−60.05 kcal mol−1/RT) cm3 mol−1 s−1, for example, agree closely with the extrapolated results of Röhrig et al. at both pressure limits. The second-order rate constant (k1o) is also in excellent agreement with our result measured by FTIR spectrometry in the present study for the temperature range of 860-1023 K as well as with many existing high-temperature data obtained primarily by shock-wave heating up to 3340 K. Kinetic modeling of the NO product yields measured at long reaction times in the present work also allowed us to reliably estimate the rate constant for reaction (3), O + N2O → N2 + O2, based on its strong competition with the NO formation from reaction (2) which has been better established. The modeled values of k3 confirmed the previous finding by Davidson et al. with significantly smaller values of A-factor and activation energy than the accepted ones. A least-squares analysis of both sets of data gave k3 = 1012.22 ± 0.04 exp[− (11.65 ± 0.24 kcal mol−1/RT)] cm3 mol−1 s−1, covering the wide temperature range of 988-3340 K.  相似文献   

18.
The Absolute rate constants for the gas-phase reactions of NO3 with HO2 and OH have been determined using the discharge flow laser magnetic resonance method (DF-LMR). Since OH was found to be produced in the reaction of HO2 with NO3, C2F3Cl was used to scavenge it. The overall rate constant, k1, for the reaction, HO2 + NO3 → products, was measured to be k1=(3.0 ± 0.7)×10?12 cm3 molecule?1 s?1 at (297 ± 2) K and P=(1.4 – 1.9) torr. This result is in reasonable agreement with the previous studies. Direct detection of HO2 and OH radicals and the use of three sources of NO3 enabled us to confirm the existence of the channel producing OH:HO2+NO3→OH+NO2+O2 (1a); the other possible channel is HO2+NO3→HNO3+O2 (1b). From our measurements and the computer simulations, the branching ratio, k1a/(k1a + k1b), was estimated to be (1.0). The rate coefficient for the reaction of OH with NO3 was determined to be (2.1 ± 1.0) × 10?11 cm3 molecule?1 s?1. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The kinetics of the CCl2 + Br2 and CCl2 + NO2 reactions have been studied at temperatures between 266 and 365 K using laser photolysis/photoionization mass spectrometry. Dichloromethylene biradicals were produced by the pulsed laser photolysis of CCl4. The bimolecular rate coefficients of the CCl2 + Br2 reaction can be described by the Arrhenius expression k1 = (7.05 ± 1.75) × 10−12 exp[(3.52 ± 0.63) kJ mol−1/RT] cm3 molecule−1 s−1. CCl2Br was observed as a primary product of this reaction. Interestingly, the bimolecular rate coefficients of the CCl2 + NO2 reaction were observed to depend weakly on the bath gas density and to possess a negative temperature dependence.  相似文献   

20.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号