首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The electrocatalytic oxidation of ethanol is studied on the non-noble catalysts Ni-Co/graphene and Ni/graphene supported on glass carbon electrode (GCE) in alkaline medium. The synthesized materials are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning transmission electron microscopy. The elements of Ni-Co/graphene and Ni/graphene catalysts are characterized using energy-dispersive X-ray spectroscopy. The electrocatalytic properties of Ni-Co/graphene and Ni/graphene for ethanol oxidation are investigated by cyclic voltammetry, chronoamperometry, and Tafel plot. Compared with Ni/graphene catalyst, Ni-Co/graphene has the higher electroactivity and better stability for ethanol oxidation. The rate constant (k s) and charge-transfer coefficient (α) are calculated for the electron exchange reaction of the modified GCE. The results indicate that Co addition could promote the oxidation reaction at the Ni/graphene catalyst. Our study demonstrates that the low-cost electrocatalyst Ni-Co/graphene has a great potential for real direct ethanol fuel cells’ application.  相似文献   

2.
In this study, sodium salts of saturated linear carboxylic acids with the general formula CH3(CH2) n?2COONa (n = 14, 18)—labeled NaC14 and NaC18—were used to inhibit the corrosion of metallic lead via the development of protective coatings for lead heritage objects. The salts were dissolved in water/ethanol 1:1 (V/V) mixture at 50 °C to increase their solubility, and the coatings were formed by immersing lead samples in the resulted solutions for 24 h. The coatings were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. A hydrophobic layer of lead carboxylates appeared to form on the metal surface, and its corrosion inhibition properties were examined by linear sweep voltammetry and electrochemical impedance spectroscopy in a corrosive solution simulating the environment of museums with uncontrolled conditions. The lead carboxylates formed a protective barrier that inhibited further lead corrosion.
Graphical abstract ?
  相似文献   

3.

Surface chemical and morphological modifications of as-plated and Cr(III)-passivated monophasic zinc-nickel coatings induced by corrosion in chloride solutions are demonstrated. The passivated samples showed slower anodic dissolution, less significant de-alloying, smaller surface dezincification and lower coating cracking, as demonstrated by Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy (SEM-EDX) of the surface and inductively coupled plasma atomic emission spectroscopy solution analysis. Surface characterization by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and SEM-EDS indicated simonkolleite as the main corrosion product for both, as-plated and Cr(III)-passivated coatings. In contrast, only for as-plated coating, which experienced higher cracking, new Ni containing phases (metallic Ni and NiO) were evidenced. The phase transition via selective dissolution of zinc is supposed to increase the concentration of the structural defects and could explain cracking in the non-passivated Zn-Ni coating.

  相似文献   

4.
The structure of pyrocarbon crystallites deposited on the surface of the pore channels of TRUMEM composite inorganic membranes (TiO2 on porous steel) was studied by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. According to the X-ray data, the lattice of pyrocarbon crystallites of size L c=40.0 nm has hexagonal symmetry with d 002=3.368 Å. The deposition of pyrocarbon crystallites with L c up to 1.5 nm was identified by X-ray photoelectron spectroscopy and scanning electron microscopy. Coating the pore channels of membranes with pyrocarbon decreased the density of the electric charge on their surface by a factor of ~5.5. The temperature dependences of the hydrodynamic permeability coefficient were obtained for the initial and pyrocarbon-modified membranes when polar and nonpolar fluids flowed through them. The electrostatic force and energy of the interaction of ethanol molecules with each other and the surface of pores were calculated; the results were compared with the O-H···O H-bond energy. The main reason for the formation of alcohol adsorption layers was the formation of H-bonds between its molecules and O-H···O atoms on the surface of pores.  相似文献   

5.
Thin TiO2 layers were deposited onto a carbon-supported Ni catalyst (Ni/C) through atomic layer deposition (ALD) and the resulting TiO2-coated Ni/C (ALD(TiO2)-Ni/C) was utilized for electrochemical glycerol oxidation in alkaline media. X-ray photoelectron spectroscopy analysis demonstrated that the Ni surface phase of ALD(TiO2)-Ni/C mainly consisted of Ni(OH)2 while that of uncoated Ni/C was a mixed phase of NiO and Ni(OH)2. The ALD(TiO2)-Ni/C exhibited electrocatalytic activity at least 2.4 times higher than that of Ni/C. Density functional theory calculations were used to investigate how the modified Ni surface with the TiO2 coating affects the adsorption/desorption of glycerol.  相似文献   

6.
The surface properties of PE with bilayer and multilayer coatings based on polyelectrolyte complexes of the biospecific modified N-vinylpyrrolidone-maleic acid copolymer with chitosan, amphiphilic chitosan, or albumin have been investigated by atomic force microscopy, multiple attenuated total reflection spectroscopy, X-ray photoelectron spectroscopy, and goniometry. The copolymer of N-vinylpyrrolidone and maleic acid contains affine ligands to plasminogen—fragments of α-amino-bonded lysine—and imparts thromboresistant properties to the surface being modified. The surface morphology and the size of particles of deposited intermediate layers of chitosan or albumin differ from those of the bilayer (multilayer) coatings containing an additional external layer of the biospecific copolymer. The deposition of the multilayer polymeric coatings promotes a more thorough coverage of the protected surface. Characteristic absorption bands that demonstrate the presence of the modifying polymers on the PE surface have been revealed; this fact is also confirmed by the X-ray photoelectron spectroscopy data on the atomic composition of the analyzed surface. A significant increase in the hydrophilicity of the modified surface is established by the contact angle technique.  相似文献   

7.
Zn–Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn–Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating–steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.  相似文献   

8.
Nickel-based coatings are potential candidates for the protection of electrochemical dissolution of steel surfaces. Such coatings, elaborated by magnetron sputtering in a nitrogen atmosphere, offer good corrosion protection, good adherence as well as stability for metallic structures. NiCr alloys with almost constant composition have been deposited with different nitrogen contents on stainless steel and carbon steel surfaces. The coating uniformity, homogeneity, composition and crystallinity have been studied by scanning electron microscopy, energy-dispersive X-ray spectrometry, atomic force microscopy and X-ray diffraction techniques. The corrosion degradation behavior of all the samples was tested in NaCl and NaCl and CO2 mixture exposures using electrochemical impedance spectroscopy measurements. Nitrided NiCr alloys on a stainless steel substrate resulted with better adhesion than carbon steel, by delaying the corrosion mechanism when exposed to NaCl and CO2 solution. A comparison of the corrosion resistive behavior of the substrates (stainless steel, carbon steel) and the coatings is made by using the electrical capacitance concept from a double-layer model for the coating–metal interface.  相似文献   

9.
Electroless Ni–P and Ni–P–TiCN composite coatings have been deposited successfully on Al substrates. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) techniques were applied to study the surface morphology and the chemical composition of the deposited films. Moreover, X‐ray diffraction (XRD) proved that Ni–P and Ni–P–TiCN deposits have amorphous structures. The properties of Ni–P–TiCN/Al composite films such as hardness, corrosion resistance and electrocatalytic activity were examined and compared with that of Ni–P/Al film. The results of hardness measurements reveal that the presence of TiCN particles with Ni–P matrix improves its hardness. Additionally, the performance against corrosion was examined using Tafel lines and electrochemical impedance spectroscopy techniques in both of 0.6 M NaCl and a mixture of 0.5 M H2SO4 with 2 ppm HF solutions. The results indicate that the incorporation of high dispersed TiCN particles into Ni–P matrix led to a positive shift of the corrosion potential and an increase in the corrosion resistance for all aluminum substrates after their coating with Ni–P–TiCN. In addition, Ni–P–TiCN/Al electrodes showed a higher electrochemical catalytic activity and stability toward methanol oxidation in 0.5 M NaOH solution compared with that of Ni–P/Al. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The Pt–Ni alloy nanoparticles with different Pt/Ni atomic ratios supported on functionalized multiwalled carbon nanotubes surface were synthesized via an impregnation-reduction method. The nanocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques. XRD demonstrated that Pt was alloyed with Ni. TEM showed that the Pt–Ni alloy nanoparticles were uniformly dispersed on the multiwalled carbon nanotubes (MWCNTs) surface, indicating appropriate amount of Ni in Pt–Ni alloy which facilitates the dispersion of nanoparticles on the MWCNT surface. XPS revealed that the Pt 4f peak in Pt–Ni/MWCNT (4:1) catalyst shifted to a lower binding energy compared with Pt/MWCNT catalyst, and nickel oxides/hydroxides such as NiO, Ni(OH)2, and NiOOH were on the surface of Pt–Ni nanoparticles. Electrochemical data based on cyclic voltammetry and chronoamperometric curves indicated that Pt–Ni (4:1) alloy nanoparticles exhibited distinctly higher activity and better stability than those of Pt/MWCNTs toward methanol oxidation in alkaline media.  相似文献   

11.
In the present work, we have investigated the formation of nanostructured oxide layers by anodic oxidation on different surface finished (mirror finished, 600 and 400 grit polished) nickel–titanium alloy (Ni–Ti) in electrolyte solution containing ethylene glycol and NH4F. The anodized surface has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and X‐ray photoelectron spectroscopy (XPS). The corrosion behaviors of the Ni–Ti substrate and anodized samples have been investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization in simulated body fluid (Hanks' solution). The results show that the native oxide on the substrate is replaced by nanostructures through anodization process. XPS of Ni–Ti substrate shows the presence of Ni0, NiO, Ti0 and TiO2 species, whereas Ni2O3 and Ni(OH)2 and TiO2 are observed in the samples after anodization. Corrosion resistance of the anodized sample is comparable with that of the untreated sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Cr–P is a new material of great importance as a decorative coating with nickel in automobile industries. Electroless plating of Cr–P alloy has been carried out using a suitable plating bath solution and working conditions. The deposit is characterized by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray diffraction, X-ray photoelectron spectroscopy and polarization techniques. New phases appear on heat treatment of the coating. The composition (Cr/P) of the coating and the oxidation states of alloying elements vary from the surface to the bulk of the material. The coatings acted as a novel electrode material with good electrocatalytic activity (low overvoltage) and good corrosion resistance for anodic oxidation of methanol in H2SO4 at normal working temperature. The good corrosion resistance of the Cr–P film is accounted for by the existence of a double oxyhydroxide passive film on the surface. The electrocatalytic activity of Cr–P is very high when compared with chromium alone.  相似文献   

13.
The possibility of subjecting aluminum to hydrophobization and superhydrophobization (SHP) with ethanol solutions of trialkoxysilanes and stearic acid is explored. It is shown that SHP coatings are highly effective in protecting Al against atmospheric corrosion. The thicknesses of surface SHP layers are determined via X-ray photoelectron spectroscopy and ellipsometry. The protective ability of SHP coatings is determined by polarization measurements and corrosion tests in a salt fog chamber.  相似文献   

14.
Electroless Ni–P and Ni–Cu–P coatings were passivated by chromate conversion treatment respectively. The anticorrosive performances of passivated coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The passivated Ni–Cu–P coating exhibited a high corrosion resistance with the icorr of 0.236 μA/cm,2 while the value of passivated Ni–P coating was only 1.030 μA/cm,2 indicating the passive film could improve the corrosion resistance of Ni–Cu–P coating to a significant extent. High‐resolution X‐ray photoelectron spectroscopy was used to determine the chemical states of elements detected in the passive film. Compared with passivated Ni–P coating, the passive film on Ni–Cu–P coating exhibited a higher ratio of Cr2O3 to Cr(OH)3 with the value of 72:28, which was the main factor for passivated Ni–Cu–P coating showing excellent corrosion resistance. The effect of Cu in electroless Ni–Cu–P coating on passivation process was discussed by the contrast experiment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The in situ generation of Ni particles from a spinel structure used in the ethanol steam reforming reaction was studied. A series of Ni1-xCuxAl2O4 (x=0, 0.01, 0.05, 0.1) catalysts precursors were synthesized by the citrate method. Samples were characterized by SBET, X-ray diffraction, neutron powder diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, thermogravimetric-mass spectrometry, scanning electron microscopy, and hydrogen chemisorption. The inclusion of Cu into the spinel structure was beneficial to facilitate the exsolution of Ni particles to the surface at lower reduction temperatures, and thus it was essential to generate highly dispersed particles on the spinel surface. Ni0.9Cu0.1Al2O4 catalyst presented the highest H2 selectivity and low mean values of CO selectivity, around 15% with zero formation of methane.  相似文献   

16.
Pure Ni and Ni–ZrO2 composite coatings were electroplated using a Watt’s bath containing different amounts of ZrO2 to be co-deposited. Surface morphology and microstructure of the samples and particle distribution in the coatings were studied using optical microscope, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The results showed that the electroplated sample in the bath containing 90 g l−1 ZrO2 has the maximum particle content and the best particle distribution. Evaluation of microstructure and corrosion behavior demonstrated that with increasing ZrO2 content in the coating, the corrosion potential shifted toward noble and positive values. This is probably due to diminishing of the metallic surface area exposed to the solution. Higher ZrO2 contents in the coating results in lower corrosion current densities probably due to the changing of the microstructure from coarse-grained columnar to fine-grained granular structure. The results revealed that the electroplated sample in the bath containing 90 g l−1 ZrO2 has the best corrosion resistance.  相似文献   

17.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Novel Zn-Co-CeO2 protective composite coatings were deposited successfully from chloride plating solutions. Two different types of ceria sources were used and compared: commercial ceria powder and home-made ceria sol. Electrodeposition was performed by a direct current in the range of 1–8 A dm−2. Two different agitation modes were used and compared, magnetic stirring and ultrasound-assisted stirring (US). The influence of magnetic stirring on the stability of the related plating baths was evaluated via a dynamic scattering method. The results pointed to better stability of the prepared ceria sol. The morphology of the composite coatings was examined by scanning electron microscopy (SEM), and particle content was determined by energy-dispersive X-ray spectroscopy (EDS). The results showed that the increase in the deposition current density was not beneficial to the coating morphology and particle content. The corrosion behavior of the Zn-Co-CeO2 composite coatings was analyzed and compared by electrochemical impedance spectroscopy and polarization resistance. The ultrasound-assisted electrodeposition at small current densities was favorable for obtaining composite coatings with enhanced corrosion stability. The protection was more effective when US was applied and, additionally, upon utilization of ceria sol as a particle source, which was revealed by higher polarization resistance and greater low-frequency impedance modulus values for sol-derived composite coatings deposited under ultrasound.  相似文献   

19.
MgF2 Xerogels     
MgF2 protective and antireflective coatings have been conventionally produced by sputtering or chemical vapour deposition CVD [1, 2], but here sol-gel routes to MgF2 are explored. MgF2(M) and MgF2(E) were prepared using an alkoxide:HF:ROH mole ratio of 1:2:200 with methanol and ethanol respectively. All sols were stable for over a year. X-ray diffraction confirmed the presence of MgF2 in samples (but also traces of MgO), and X-ray photoelectron spectroscopy suggested some F deficiency in the surface. Nevertheless, the MgF2 xerogels had surface areas and porosities that were very high and this may be used to advantage in coatings or sensors.  相似文献   

20.
AbstractThe surface chemistry and corrosion behavior of Al85Ni9Ce6 melt-spun ribbons were studied after the first hours of immersion in 3.5-wt% NaCl solution at room temperature. X-ray photoelectron spectroscopy (XPS) was used to assess the chemical states of Al, Ce, Ni, and O. Electrochemical impedance spectroscopy was used to assess the corrosion resistance of the Al85Ni9Ce6 ribbons. The alloy remained immersed for up to 48 hours. The results showed that hydroxide species in the passive film play a central role in the corrosion behavior of the Al85Ni9Ce6 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号