首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One-dimensional (1D) Ag/AgBr/TiO2 nanofibres (NFs) have been successfully fabricated by the one-pot electrospinning method. In comparison with bare TiO2 NFs and Ag/AgBr/PVP (polyvinylpyrrolidone) NFs, the 1D Ag/AgBr/TiO2 NFs photocatalyst exhibits much higher photocatalytic activity in the degradation of a commonly used dye, methylene blue (MB), under visible light. The photocatalytic removal efficiency of MB over Ag/AgBr/TiO2 NFs achieves almost 100 % in 20 min. The photocatalytic reaction follows the first-order kinetics and the rate constant (k) for the degradation of MB by Ag/AgBr/TiO2 NFs is 5.2 times and 6.6 times that of Ag/AgBr/PVP NFs and TiO2 NFs, respectively. The enhanced photocatalytic activity is ascribed to the stronger visible light absorption, more effective separation of photogenerated electron-hole pairs, and faster charge transfer in the long nanofibrous structure. The Ag/AgBr/TiO2 NFs maintain a highly stable photocatalytic activity due to its good structural stability and the self-stability system of Ag/AgBr. The mechanisms for photocatalysis associated with Ag/AgBr/TiO2 NFs are proposed. The degradation of MB in the presence of scavengers reveals that h+ and ?O 2 ? significantly contribute to the degradation of MB.  相似文献   

2.
A novel core–shell TiO2@ZnIn2S4composite has been synthesized successfully by a simple and flexible hydrothermal route using TiO2as precursors.The as-synthesized samples were characterized by X-ray diffraction,UV–vis diffuse reflectance spectra and transmission electron microscopy.The photocatalytic properties of samples were tested by degradation of aqueous methylene blue(MB)under visible light irradiation.It was found that the as-synthesized TiO2@ZnIn2S4photocatalyst was more effcient than TiO2and ZnIn2S4in the photocatalytic degradation of MB.Moreover,TEM images confrmed the TiO2@ZnIn2S4nanoparticles possessed a well-proportioned core–shell morphology.  相似文献   

3.
Uniform hollow Au@TiO2 core shell spheres with moveable Au nanoparticles were synthesized based on templating against Au@carbon spheres. The diameter of the shell of the Au@TiO2 spheres could be controlled by adjusting the Ti(OC4H9)4 hydrolyzing reaction time or the ratio of Ti(OC4H9)4 to Au@carbon spheres, and the shell thickness of the core-shell spheres can be varied from 25 nm to 40 nm. As prepared hollow Au@TiO2 core-shell spheres display enhanced photocatalytic activity in the initial stage of photocatalytic degradation of methylene blue compared with pure hollow TiO2 spheres and the commercial photocatalyst TiO2(P-25).  相似文献   

4.
In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.  相似文献   

5.
《中国化学会会志》2017,64(11):1333-1339
The degradation of organic dyes in the presence of modified TiO2 is still under intensive investigation. We report here an evaluation of the photocatalytic activity of nitrogen‐ (N‐) and sulfur‐ (S‐) doped TiO2 for the degradation of phenol and methylene blue (MB). N‐doped TiO2 (N–TiO2), S‐doped TiO2 (S–TiO2), and N–S‐doped TiO2 (N–S–TiO2) were prepared using the sol–gel method. The photocatalytic activity was evaluated in a batch reactor using phenol and MB as models of pollutants. In addition, this investigation was performed using a household lamp as the visible light source. Properties of the synthesized materials in terms of Brunauer–Emmett–Teller (BET) surface analysis, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and photocatalytic ability were examined. Our study shows that N–S–TiO2 exhibits better photocatalytic degradation ability for all the considered dyes compared to the other doped TiO2 materials. In conclusion, we have successfully prepared and evaluated the photocatalytic activity of N‐ and S‐doped TiO2 for the degradation of phenol and MB using an ordinary household lamp.  相似文献   

6.
In this paper, ceramic plates were used as a support of TiO2 nanoparticles for photocatalytic decolorization of a mixture of three dyes. The three textile dyes (C.I. Basic Red 46, C.I. Basic Blue 3 and Malachite Green) were quantified simultaneously during the photocatalytic degradation process. The partial least squares modeling was successfully applied for the multivariate calibration of the spectrophotometric data. Also, the central composite design has been applied to the optimization of photocatalytic decolorization of the dye solution containing three dyes using an immobilized UV/TiO2 process. The optimum initial concentration of three dyes, reaction time, and UV light intensity were found to be 5 mg/L, 240 min, and 47.2 W/m2, respectively. The chronic phytotoxicity of mixture of dyes was evaluated using aquatic species Spirodela polyrhiza (S. polyrhiza) prior to and after photocatalysis. The phytotoxicity results revealed that the photocatalysis process could effectively reduce the phytotoxicity of the dyes from their aqueous solutions.  相似文献   

7.
Carbon fiber (CF)‐based WO3/TiO2 composite catalysts (WO3/TiO2/CF) were successfully synthesized by solvothermal method. The catalysts were characterized by XPS, SEM, BET, XRD, FTIR, Raman and UV–Vis. The analyses confirmed the WO3/TiO2 nanoparticles with high crystallinity deposited on the carbon structure. The photocatalytic degradation of Orange II azo dye under UV and sunlight illumination with the synthesized catalyst was explored. The composite catalyst displayed high performance (85%) for Orange II degradation while that of for WO3/TiO2 was found as 76%. The effects of CF amount, solution pH, initial dye concentration and catalyst dose on photocatalytic performance were studied. It was found that the degradation efficiency increased from 68% to 90% with the increasing CF amount from 3 wt% to 5 wt%, while the further increase in CF amount (7–10 wt%) decreased the photodegradation due to the blocking the active sites of WO3/TiO2. The enhanced photocatalytic efficiency was mainly attributed to the electrical properties of the CF and reduced bandgap.  相似文献   

8.
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs‐RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.  相似文献   

9.
In the present study, pristine BiVO4, TiO2 and BiVO4/TiO2 core-shell heterostructured nanoparticles are prepared by hydrothermal methods and studied for structural, morphological, optical, photoelectrochemical water splitting and photocatalytic degradation of methylene blue as an organic pollutant. Both pristine BiVO4 and TiO2 exhibit poor PEC and PC performance under visible light illumination. However, an enhanced PEC and PC activity in BiVO4/TiO2 core-shell heterostructure is observed due to high solar energy absorption and superior charge separation properties in core-shell nanoparticles. The photoelectrode prepared using BiVO4/TiO2 core-shell nanoparticles exhibit a photocathode behavior and produced cathodic photocurrent, however, the pristine BiVO4 and TiO2 photoelectrodes act as photoanode and produced anodic photocurrent. This behavior of change in current direction is also observe in the Mott-Schottky analysis where the BiVO4/TiO2 core-shell nanoparticles photoelectrode exhibits the positive slow showing p-type semiconducting behavior. The change in cathodic photoresponse in core-shell nanoparticles in comparison to anodic photoresponse of BiVO4 and TiO2 nanoparticles is explained in terms of the variations in the work function values. These results highlight the advantages of core-shell nanoparticle of suitable materials for photocatalytic and photoelectrochemical applications.  相似文献   

10.
Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron–hole separation, and lead to the increasing photocatalytic activity.  相似文献   

11.
Photocatalytic degradation is an important method to mediate organic pollution in the environment. This article reports Ag-modified SnO2@TiO2 core–shell composite photocatalysts prepared via a hydrothermal method. The Ag modification and core structure in the composite enhanced the photocatalytic activity and stability of TiO2 in Rhodamine B degradation under visible light irradiation. The composite modified in 0.15 M AgNO3 showed an optimal level of photocatalytic activity, as it degraded 99.14 % Rhodamine B in 60 min while pure TiO2 only degraded 45.7 % during the same time.  相似文献   

12.
在用阳极氧化法制备有序排列TiO2纳米管阵列薄膜的基础上,引入脉冲沉积工艺,成功实现了均匀、弥散分布的Cu2O纳米颗粒修饰改性TiO2纳米管阵列,形成Cu2O/TiO2 纳米管异质结复合材料. 利用场发射扫描电镜(FESEM)、场发射透射电镜(FETEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对样品进行表征,重点研究了Cu2O/TiO2 纳米管异质结的光电化学特性和对甲基橙(MO)的可见光催化降解性能. 结果表明,Cu2O纳米颗粒均匀附着在TiO2纳米管阵列的管口和中部位置,所制备的Cu2O/TiO2 纳米管异质结具有高效的可见光光催化性能;在浓度为0.01 mol·L-1的CuSO4溶液中制得的Cu2O/TiO2纳米管异质结表现出最好的电化学特性和光催化性能;另外,对Cu2O纳米颗粒影响光催化活性的机理进行了讨论.  相似文献   

13.
In this work, the Er3+:Y3Al5O12 as up-conversion luminescence agent was mixed with TiO2 and the corresponding Er3+:Y3Al5O12/TiO2 composite films were prepared on the one-sided surface of treated sheet glass through sol-gel dip-coating method. The prepared Er3+:Y3Al5O12/TiO2 composite films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Their photocatalytic activities were examined through the degradation of some organic dyes under visible-light irradiation. The degradation process of organic dyes was monitored by UV-Vis spectrophotometer. Furthermore, some main influence factors on the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film such as heat-treatment temperature and heat-treatment time were studied. The results indicate that three layer Er3+:Y3Al5O12/TiO2 composite films with one Er3+:Y3Al5O12/TiO2 composite film (as first layer close to sheet glass) and two pure TiO2 film (as second and third layers) display a higher visible-light photocatalytic activity during photocatalytic degradation of Azo Fuchsine. In addition, the results showed that the visible-light photocatalytic activity of Er3+:Y3Al5O12/TiO2 composite film related to the layer number and layer sequence on the sheet glass. Perhaps, the research results may offer some meaningful references for developing solar energy continuous flow wastewater treatment reactor.  相似文献   

14.
We demonstrate a facile wet chemical approach for fabricating spherical metal/metal‐oxide core@mesoporous silica shell hybrid nanoparticles with different core and shell thicknesses. Vertically aligned mesoporous silica (mSiO2) shells were fabricated over the pre‐synthesized spherical SiO2 nanoparticles through a three‐step strategy: 1) synthesis of core materials, 2) covering the core with an organic–inorganic composite layer, and 3) removing the organic template through calcinations in air. The mechanisms of hybrid structure formation are proposed. The multifunctional nature of the hybrid structures could be induced by incorporating guest ions/molecules, such as Ag, Mn, and TiO2, into the pores of an mSiO2 shell. Mn and TiO2 cluster‐ incorporated composite structures have been tested to be antioxidizing agents and effective photocatalysts through electron spin resonance, radical scavenging tests, and the photocatalytic degradation of rhodamine B. The possibility of incorporating several hetero‐element guest clusters in these mesoporous composite particles makes them highly attractive for multifunctional applications.  相似文献   

15.
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectra (UV–vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).  相似文献   

16.
A nanoporous polymeric crystalline TiO2 composite (TiO2/PDVB‐MA) has been successfully synthesized through an in situ synthesis method using divinylbenzene (DVB), methacrylic acid (MA) and tetrabutyl titanate. The experimental results showed that TiO2 nanoparticles composed of the mixture phases of anatase and rutile were homogeneously dispersed into the PDVB‐MA support. The TiO2/PDVB‐MA composite was used as photocatalyst for Rhodamine B (RhB), bisphenol A and 2,4,6‐trichlorophenol degradation under visible light irradiation. More interestingly, the excellent photocatalytic performance of the composite was observed with regard to RhB and bisphenol A, which might be ascribed to the synergistic effect between TiO2 nanoparticles and PDVB‐MA. Moreover, TiO2/PDVB‐MA composite could be recycled at least four times in the removal of RhB, suggesting that it is a promising photocatalyst to catalyze the degradation of organic pollutants under visible light irradiation.  相似文献   

17.
《中国化学快报》2020,31(6):1598-1602
Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approach was utilized to synthesize Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and convenient magnetic separability(denoted as Fe_3 O_4@-SiO_2@Pt/mTiO_(2-x)).These photocatalysts consist of magnetic Fe_3 O4 cores,nonporous insulating SiO_2 middle layer and mesoporous anatase TiO_(2-x) shell decorated by Pt nanoparticles(~3.5 nm) through wet impregnation and H_2 reduction.As a result of high activity of oxygen-deficiency of black TiO_(2-x) by H_2 reduction and efficient inhibition of electron-hole recombination by Pt nanoparticles,the rationally designed core-shell Fe_3 O_4@SiO_2@Pt/mTiO_(2-x) photocatalysts exhibit superior photocatalytic performance in rhodamine B(RhB) degradation under visible light irradiation,with more than 98% of RhB degraded within 50 min.These core-shell structured photocatalysts show excellent recyclability under the assistance of magnetic separation with well-retained photocatalytic performance even after running five cycles.This stepwise synthesis method paves the way for the rational design of a high-efficiency recyclable heterogeneous catalyst,including photocatalysts,for various applications.  相似文献   

18.
TiO_2因具有多种优异的特性被广泛应用在半导体光催化领域,但是纳米结构的TiO_2颗粒细微,在进行光催化反应之后,难以回收再利用。本文以廉价钛铁矿为原料制备光催化剂TiO_2,同时利用副产物铁合成Fe_3O_4,并采用简单温和的浸渍法制备Fe_3O_4/TiO_2磁性复合材料。通过XRD、FT-IR、SEM、EDS等手段对材料形态结构进行表征分析,并以光降解有机污染物若丹明B为探针反应,考察其光催化性能。结果表明,质量比为1∶10的Fe_3O_4/TiO_2复合材料结构稳定、分散均匀,具有最优的光催化活性(波长356nm下反应3h,若丹明B降解率达到64.0%),并表现出良好的重复性。同时,动力学结果显示降解符合一级反应动力学。  相似文献   

19.
PPy@TS nanocomposite with enhanced photocatalytic capability was prepared by in situ polymerizing polypyrrole on the surface of TiO2/SiO2 nanofibrous membrane.  相似文献   

20.
The core-shell nanostructure materials have gained great interests because of its excellent photocatalytic properties and promising applications in several fields. In this work, we prepared the core-shell SiO2@TiO2 nanocomposites by the versatile kinetics-controlled coating method. The graphene oxide (GO) was further reduced over SiO2@TiO2 using UV-assisted photocatalytic reduction method. The physicochemical properties of the as-prepared SiO2@TiO2/RGO nanocomposites were characterized by SEM, XRD, BET, EDS, and FTIR. Results showed that, TiO2 was mainly composed of anatase phase with high crystallinity. Their photocatalytic activities were examined by the degradation of Rhodamine B (RhB) under UV light irradiation. The presence of RGO obviously improved the adsorption ability and photodegradation performance of the composites to RhB. The degradation kinetics of RhB can be described by the pseudo-first-order model. The optimum mass ratio of SiO2@TiO2 to RGO in the composite was 1/0.05 and the rate constant was about 4 times greater than that of the SiO2@TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号