首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Our method for estimating solvent effects on electronic spectra in media with strong solute-solvent interactions is applied here to calculate the absorption and fluorescence solvatochromatic shifts of dilute triazines in water. First, the ab initio CASSCF method is used to estimate the gas-phase electronic excitation properties and state charge distributions; second, Monte Carlo simulations are performed to elucidate liquid structures around the ground and excited state solute; finally, the solvent shift is evaluated based on the gas-phase charge distributions and the explicit solvent structures. For the dilute triazine solutions, simulations predict one linear (different) hydrogen bond attached to each nitrogen atom. Upon the first (1)(n, pi*)electronic excitation one hydrogen bond is completely broken. For the absorption and fluorescence spectra, our calculations demonstrated that the specific solvent-solute interaction, in any electronic state, plays a critical role in the determination of solvent shifts.  相似文献   

3.
Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited‐state calculations were extracted from ground‐state molecular dynamics (MD) simulations using the self‐consistent‐charge density functional tight binding (SCC‐DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited‐state calculations used time‐dependent density functional theory (TDDFT) and the DFT‐based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto‐N7H and keto‐N9H guanine, with particular focus on solvent effects in the low‐energy spectrum of the keto‐N9H tautomer. When compared with the vertical excitation energies of gas‐phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC‐DFTB‐based rather than B3LYP‐based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas‐phase and solution spectra, typically ca. 0.1–0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent‐induced structural changes and from electrostatic solute–solvent interactions, the latter being dominant. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

4.
5.
The absorption spectra of aminocoumarin C151 in water and n-hexane solution are investigated by an explicit quantum chemical solvent model. We improved the efficiency of the frozen-density embedding scheme, as used in a former study on solvatochromism (J. Chem. Phys. 2005, 122, 094115) to describe very large solvent shells. The computer time used in this new implementation scales approximately linearly (with a low prefactor) with the number of solvent molecules. We test the ability of the frozen-density embedding to describe specific solvent effects due to hydrogen bonding for a small example system, as well as the convergence of the excitation energy with the number of solvent molecules considered in the solvation shell. Calculations with up to 500 water molecules (1500 atoms) in the solvent system are carried out. The absorption spectra are studied for C151 in aqueous or n-hexane solution for direct comparison with experimental data. To obtain snapshots of the dye molecule in solution, for which subsequent excitation energies are calculated, we use a classical molecular dynamics (MD) simulation with a force field adapted to first-principles calculations. In the calculation of solvatochromic shifts between solvents of different polarity, the vertical excitation energy obtained at the equilibrium structure of the isolated chromophore is sometimes taken as a guess for the excitation energy in a nonpolar solvent. Our results show that this is, in general, not an appropriate assumption. This is mainly due to the fact that the solute dynamics is neglected. The experimental shift between n-hexane and water as solvents is qualitatively reproduced, even by the simplest embedding approximation, and the results can be improved by a partial polarization of the frozen density. It is shown that the shift is mainly due to the electronic effect of the water molecules, and the structural effects are similar in n-hexane and water. By including water molecules, which might be directly involved in the excitation, in the embedded region, an agreement with experimental values within 0.05 eV is achieved.  相似文献   

6.
In studies involving an energy transfer process it is important to have definite knowledge of the excited state of the solute which is responsible for the emitted fluorescence that is measured. When solutions with low solute concentration are irradiated with ionizing particles, the initial excitations are produced in the solvent molecules (excited molecules or ions). The excited solvent molecules and ions can transfer energy to the solute producing excited solute molecules. The measured scintillations are the result of the return of the solute molecules to the ground state.  相似文献   

7.
The energy dissipation mechanism from photoexcited azobenzene (Az) was studied by femtosecond time-resolved UV absorption spectroscopy using 7-amino-4-trifluoromethylcoumarin (ATC) as a probe. The distance between the probe molecule and Az was fixed by covalently linking them together through a rigid proline spacer. Picosecond dynamics in THF solutions were studied upon excitation into the S1 state by a 100 fs laser pulse at 480 nm. Transient absorption spectra obtained for Az-Pro-ATC combined the S1 state absorption and vibrationally excited ground-state absorption of ATC. Correction of the transient spectrum of Az-Pro-ATC for the S1 absorption provided the time-resolved absorption spectrum of the ATC hot band. Three major components were observed in the transient kinetics of Az-Pro-ATC vibrational cooling. It is proposed that in ca. 0.25 ps after the excitation, the S1 state of azobenzene decays to form an initial vibrationally excited nonthermalized ground state of Az-Pro-ATC that involves vibrational modes of both azobenzene and coumarin. This hot ground state decays in ca. 0.32 ps to the next, vibrationally equilibrated, transient state by redistributing the energy within the molecule. Subsequently, the latter state cools by transferring its energy to the closest solvent molecules in ca. 5 ps; then, the energy diffuses to the bulk solvent in 13 ps.  相似文献   

8.
The permanent dipole moments of excited molecules can be obtained from the ratio of the solvent shifts of absorption and fluorescence spectra. This ratio method eliminates the uncertain solute cavity radius parameter, as well as the solvent polarity function. In the case of the first excited singlet state of aniline the dipole moment is 5 D (versus 1.57 D in the ground state).  相似文献   

9.
This work presents a theoretical insight into the variation of the site-specific intermolecular hydrogen-bonding (HB), formed between C=O group of fluorenone (FN) and O?H groups of methanol (MeOL) molecules, induced by both the electronic excitation and the bulk solvent effect. Through the calculation of molecular ground- and excited-state properties, we not only demonstrate the characters of HB strengthening induced by electronic excitation and the bulk solvent effect but also reveal the underlying physical mechanism which leads to the HB variation. The strengthening of the intermolecular HB in electronically excited states and in liquid solution is characterized by the reduced HB bond-lengths and the red-shift IR spectra accompanied by the increasing intensities of IR absorption corresponding to the characteristic vibrational modes of the O-H and C=O stretching. The HB strengthening in the excited electronic states and in solution mainly arises from the charge redistribution of the FN molecule induced by the electronic excitation and bulk solvent instead of the intermolecular charge transfer. The charge redistribution of the solute molecule increases the partial dipole moment of FN molecule and the FN-MeOL intermolecular interaction, which subsequently leads to the HB strengthening. With the bulk solvent effect getting involved, the theoretical IR spectra of HBed FN-MeOL complexes agree much better with the experiments than those of gas-phase FN-MeOL dimer. All the calculations are carried out based on our developed analytical approaches for the first and second energy derivatives of excited electronic state within the time-dependent density functional theory.  相似文献   

10.
The photophysical properties of 2‐phenyl‐naphtho[1,2‐d][1,3]oxazole, 2(4‐N,N‐dimethylaminophenyl)naphtho[1,2‐d][1,3]oxazole and 2(4‐N,N‐diphenylaminophenyl) naphtho[1,2‐d][1,3]oxazole were studied in a series of solvents. UV–Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV–Vis absorption and fluorescence spectra in terms of the Lippert–Mataga equation shows a large increase in the excited‐state dipole moment, which is also compatible with the formation of an intramolecular charge‐transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1–3 ns as well as their high photostability.  相似文献   

11.
Highly accurate excitation spectra are predicted for the low-lying n-π* and π-π* states of uracil for both the gas phase and in water employing the complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT) methods. Implementation of the effective fragment potential (EFP) solvent method with CASSCF and MCQDPT enables the prediction of highly accurate solvated spectra, along with a direct interpretation of solvent shifts in terms of intermolecular interactions between solvent and solute. Solvent shifts of the n-π* and π-π* excited states arise mainly from a change in the electrostatic interaction between solvent and solute upon photoexcitation. Polarization (induction) interactions contribute about 0.1 eV to the solvent-shifted excitation. The blue shift of the n-π* state is found to be 0.43 eV and the red shift of the π-π* state is found to be -0.26 eV. Furthermore, the spectra show that in solution the π-π* state is 0.4 eV lower in energy than the n-π* state.  相似文献   

12.
13.
The solvent effect on the absorption spectra of coumarin 120 (C120) in water was studied utilizing the combined quantum mechanical∕molecular mechanical (QM∕MM) method. In molecular dynamics (MD) simulation, a new sampling scheme was introduced to provide enough samples for both solute and solvent molecules to obtain the average physical properties of the molecules in solution. We sampled the structure of the solute and solvent molecules separately. First, we executed a QM∕MM MD simulation, where we sampled the solute molecule in solution. Next, we chose random solute structures from this simulation and performed classical MD simulation for each chosen solute structure with its geometry fixed. This new scheme allowed us to sample the solute molecule quantum mechanically and sample many solvent structures classically. Excitation energy calculations using the selected samples were carried out by the generalized multiconfigurational perturbation theory. We succeeded in constructing the absorption spectra and realizing the red shift of the absorption spectra found in polar solvents. To understand the motion of C120 in water, we carried out principal component analysis and found that the motion of the methyl group made the largest contribution and the motion of the amino group the second largest. The solvent effect on the absorption spectrum was studied by decomposing it in two components: the effect from the distortion of the solute molecule and the field effect from the solvent molecules. The solvent effect from the solvent molecules shows large contribution to the solvent shift of the peak of the absorption spectrum, while the solvent effect from the solute molecule shows no contribution. The solvent effect from the solute molecule mainly contributes to the broadening of the absorption spectrum. In the solvent effect, the variation in C-C bond length has the largest contribution on the absorption spectrum from the solute molecule. For the solvent effect on the absorption spectrum from the solvent molecules, the solvent structure around the amino group of C120 plays the key role.  相似文献   

14.
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanced solvent bands exhibit similar peaks to those of the solute bands in the wavenumber region of 21,700-25,000 cm(-1) (10,850-12,500 cm(-1) in the hyper-Raman exciting wavenumber), where the solute all-trans-β-carotene shows a strong absorption assigned to the 1A(g) → 1B(u) transition. This fact indicates that the solvent hyper-Raman bands gain their intensities through resonances with the electronic states of the solute. The observed excitation profiles are quantitatively analyzed and are successfully accounted for by an extended vibronic theory of resonance hyper-Raman scattering that incorporates the vibronic coupling within the excited electronic manifold of all-trans-β-carotene through the vibrational motions of cyclohexane. It is shown that the major resonance arises from the B-term (vibronic) coupling between the first excited vibrational level (v = 1) of the 1B(u) state and the ground vibrational level (v = 0) of a nearby A(g) state through ungerade vibrational modes of both the solute and the solvent molecules. The inversion symmetry of the solute all-trans-β-carotene is preserved, suggesting the weak perturbative nature of the solute-solvent interaction in the molecular near-field effect. The present study introduces a new concept, "intermolecular vibronic coupling," which may provide an experimentally accessible∕theoretically tractable model for understanding weak solute-solvent interactions in liquid.  相似文献   

15.
Electronic absorption, excitation and fluorescence spectra of fluorenone and 4-hydroxyfluorenone were recorded at room temperature in several aprotic solvent of varying polarities. The ground (mu(g)) and excited (mu(e)) state dipole moments of both molecules were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). These experimental results were completed with theoretical results of quantum chemical calculations (AM1). The experimental and theoretical dipole moments in the ground state were compared. It was determined that dipole moments of excited state were higher than those of the ground state for both molecules.  相似文献   

16.
Transient absorption spectroscopy has been used to elucidate the nature of the S1 intermediate state populated following excitation of cob(III)alamin (Cbl(III)) compounds. This state is sensitive both to axial ligation and to solvent polarity. The excited-state lifetime as a function of temperature and solvent environment is used to separate the dynamic and electrostatic influence of the solvent. Two distinct types of excited states are identified, both assigned to pi3d configurations. The spectra of both types of excited states are characterized by a red absorption band (ca. 600 nm) assigned to Co 3d --> 3d or Co 3d --> corrin pi* transitions and by visible absorption bands similar to the corrin pi-->pi* transitions observed for ground state Cbl(III) compounds. The excited state observed following excitation of nonalkyl Cbl(III) compounds has an excited-state spectrum characteristic of Cbl(III) molecules with a weakened bond to the axial ligand (Type I). A similar excited-state spectrum is observed for adenosylcobalamin (AdoCbl) in water and ethylene glycol. The excited-state spectrum of methyl, ethyl, and n-propylcobalamin is characteristic of a Cbl(III) species with a sigma-donating alkyl anion ligand (Type II). This Type II excited-state spectrum is also observed for AdoCbl bound to glutamate mutase. The results are discussed in the context of theoretical calculations of Cbl(III) species reported in the literature and highlight the need for additional calculations exploring the influence of the alkyl ligand on the electronic structure of cobalamins.  相似文献   

17.
The excited state of Chlorophyll a is investigated by femtosecond transient absorption. The transient absorption spectra of Q band and By band of Chlorophyll a in ethanol have been observed. The fast kinetics of Chlorophyll a which exhibit two ultrafast components were also measured. The one is assigned to transient absorption of the inhomogeneously broadened ground state absorption spectrum, while the other is the response of the solvent to the change of the electron configuration in the excited state due to salvation dynamics of the polar solvent molecules. To understand the anisotropy of Chlorophyll a in ethanol, the anisotropy profile was also performed by 405 nm excitation and found that the anisotropy profile is 0.143. The possible combination of θda, θdb and η at excitation of By band has been simulated.  相似文献   

18.
We present a formal comparison between the two different approaches to the calculation of electronic excitation energies of molecules in solution within the continuum solvation model framework, taking also into account nonequilibrium effects. These two approaches, one based on the explicit evaluation of the excited state wave function of the solute and the other based on the linear response theory, are here proven to give formally different expressions for the excitation energies even when exact eigenstates are considered. Calculations performed for some illustrative examples show that this formal difference has sensible effects on absolute solvatochromic shifts (i.e., with respect to gas phase) while it has small effects on relative (i.e., nonpolar to polar solvent) solvatochromic shifts.  相似文献   

19.
The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3 eV to ionization at 12.4 eV. The two channels occur with similar yield for an excitation energy of 9.3 eV. For the lowest excitation energy, the transient absorption at 267 nm probes the geminate recombination kinetics of the H and OH fragments, providing a window on the dissociation dynamics. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+/-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies.  相似文献   

20.
In this paper, we show that a few coumarin dye solutions exhibit dual amplified spontaneous emission (ASE) spectra under pulsed laser excitation, though all these solutions exhibit only one fluorescence band under steady-state conditions. The anomalous band, appearing only in ASE spectra, had been attributed to the superexciplex--a new molecular species. This is made of two excited molecules and is obtainable only under pulsed laser excitation. This complex is different from the well known excimer or exciplex, wherein only one atom or molecule is in the excited state. The superexciplex is possible with the two polar excited molecules coming together to form an excited state association, with the solvent acting as some sort of bridge. With very polar dye molecules, such an association is possible even with the inert benzene acting as a bridge; otherwise solvents like ethyl acetate, with an oxygen atom, is necessary for the linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号