首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
For a connected graph G, the Hosoya polynomial of G is defined as H(G, x) = ∑{u,v}?V(G)xd(u, v), where V(G) is the set of all vertices of G and d(u,v) is the distance between vertices u and v. In this article, we obtain analytical expressions for Hosoya polynomials of TUC4C8(R) nanotubes. Furthermore, the Wiener index and the hyper‐Wiener index can be calculated. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

2.
Let G = (V, E) be a simple connected graph with vertex set V and edge set E. The Wiener index W(G) of G is the sum of distances between all pairs of vertices in G, i.e., , where d G (u, v) is the distance between vertices u and v in G. In this paper, we first give a new formula for calculating the Wiener index of an (n,n)-graph according its structure, and then characterize the (n,n)-graphs with the first three smallest and largest Wiener indices by this formula.  相似文献   

3.
The Randić index of an organic molecule whose molecular graph is G is defined as the sum of (d(u)d(v))−1/2 over all pairs of adjacent vertices of G, where d(u) is the degree of the vertex u in G. In Discrete Mathematics 257, 29–38 by Delorme et al. gave a best-possible lower bound on the Randić index of a triangle-free graph G with given minimum degree δ(G). In the paper, we first point out a mistake in the proof of their result (Theorem 2 of [2002]), and then we will show that the result holds when δ(G) ≥ 2.AMS subject classification: 05C18  相似文献   

4.
The Randić index of an organic molecule whose molecular graph G is defined as the sum of (d(u)d(v))−1/2 over all pairs of adjacent vertices of G, where d(u) is the degree of the vertex u in G. In Delorme et al., Discrete Math. 257 (2002) 29, Delorme et al gave a best-possible lower bound on the Randić index of a triangle-free graph G with given minimum degree δ(G). In the paper, we first point out a mistake in the proof of their result (Theorem 2 of Delorme et al., Discrete Math. 257 (2002) 29), and then we will show that the result holds when δ(G)≥ 2.  相似文献   

5.
Sharp Bounds for the Second Zagreb Index of Unicyclic Graphs   总被引:1,自引:0,他引:1  
The second Zagreb index M 2(G) of a (molecule) graph G is the sum of the weights d(u)d(v) of all edges uv of G, where d(u) denotes the degree of the vertex u. In this paper, we give sharp upper and lower bounds on the second Zagreb index of unicyclic graphs with n vertices and k pendant vertices. From which, and C n have the maximum and minimum the second Zagreb index among all unicyclic graphs with n vertices, respectively.  相似文献   

6.
The Randić index of an organic molecule whose molecular graph is G is the sum of the weights (d(u)d(v))−1/2 of all edges uv of G, where d(u) and d(v) are the degrees of the vertex u and v in G. A graph G is called quasi-tree, if there exists such that Gu is a tree. In the paper, we give sharp lower and upper bounds on the Randić index of quasi-tree graphs. Mei Lu: Partially supported by NSFC (No. 10571105).  相似文献   

7.
The Hosoya polynomial of a chemical graph G is , where d G (u, v) denotes the distance between vertices u and v. In this paper, we obtain analytical expressions for Hosoya polynomials of TUC4C8(S) nanotubes. Accordingly, the Wiener index, obtained by Diudea et al. (MATCH Commun. Math. Comput. Chem. 50, 133–144, (2004)), and the hyper-Wiener index are derived. This work is supported by the Fundamental Research Fund for Physics and Mathematic of Lanzhou University (Grant No. LZULL200809).  相似文献   

8.
The connectivity index χ1(G) of a graph G is the sum of the weights d(u)d(v) of all edges uv of G, where d(u) denotes the degree of the vertex u. Let T(n, r) be the set of trees on n vertices with diameter r. In this paper, we determine all trees in T(n, r) with the largest and the second largest connectivity index. Also, the trees in T(n, r) with the largest and the second largest connectivity index are characterized. Mei Lu is partially supported by NNSFC (No. 10571105).  相似文献   

9.
Let G be a graph and d v denote the degree of the vertex v in G. The zeroth-order general Randić index of a graph is defined as R α0(G) = ∑ vV(G) d v α where α is an arbitrary real number. In this paper, we obtained the lower and upper bounds for the zeroth-order general Randić index R α0(G) among all unicycle graphs G of order n. We give a clear picture for R α0(G) of unicycle graphs according to real number α in different intervals.  相似文献   

10.
The Randić index of an organic molecule whose molecular graph is G is the sum of the weights (d(u)d(v))−1/2 of all edges uv of G, where d(u) and d(v) are the degrees of the vertices u and v in G. Let T be a tree with n vertices and k pendant vertices. In this paper, we give a sharp upper bound on Randić index of T.  相似文献   

11.
The Randić index of an organic molecule whose molecular graph is G is the sum of the weights (d(u)d(v))−1/2 of all edges uv of G, where d(u) and d(v) are the degrees of the vertices u and v in G. We give a sharp lower bound on the Randić index of conjugated trees (trees with a perfect matching) in terms of the number of vertices. A sharp lower bound on the Randić index of trees with a given size of matching is also given Mei Lu: Partially supported by NNSFC (No. 60172005) Lian-zhu Zhang: Partially supported by NNSFC (No. 10271105) Feng Tian: Partially supported by NNSFC (No. 10431020)  相似文献   

12.
The Padmakar–Ivan (PI) index is a graph invariant defined as the summation of the sums of n eu (e|G) and n ev (e|G) over all the edges e = uv of a connected graph G, i.e., , where n eu (e|G) is the number of edges of G lying closer to u than to v and n ev (e|G) is the number of edges of G lying closer to v than to u. An efficient formula for calculating the PI index of a class of pericondensed benzenoid graphs consisting of three rows of hexagonal of various lengths.  相似文献   

13.
For a connected graph G we denote by d(G,k) the number of vertex pairs at distance k. The Hosoya polynomial of G is H(G,x) = ∑k≥0 d(G,k)xk. In this paper, analytical formulae for calculating the polynomials of armchair open‐ended nanotubes are given. Furthermore, the Wiener index, derived from the first derivative of the Hosoya polynomial in x = 1, and the hyper‐Wiener index, from one‐half of the second derivative of the Hosoya polynomial multiplied by x in x = 1, can be calculated. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
Let G be a graph and dv the degree (=number of first neighbors) of its vertex v. The connectivity index of G is χ=∑ (dudv)−1/2, with the summation ranging over all pairs of adjacent vertices of G. In a previous paper (Comput. Chem. 23 (1999) 469), by applying a heuristic combinatorial optimization algorithm, the structure of chemical trees possessing extremal (maximum and minimum) values of χ was determined. It was demonstrated that the path Pn is the n-vertex tree with maximum χ-value. We now offer an alternative approach to finding (molecular) graphs with maximum χ, from which the extremality of Pn follows as a special case. By eliminating a flaw in the earlier proof, we demonstrate that there exist cases when χ does not provide a correct measure of branching: we find pairs of trees T, T′, such that T is more branched than T′, but χ(T)>χ(T′). The smallest such examples are trees with 36 vertices in which one vertex has degree 31.  相似文献   

15.
The Padmakar–Ivan (PI) index is a graph invariant defined as the summation of the sums of n eu (e|G) and n ev (e|G) over all the edges e = uv of a connected graph G, i.e., PI(G) = ∑ eE(G)[n eu (e|G) + n ev (e|G)], where n eu (e|G) is the number of edges of G lying closer to u than to v and n ev (e|G) is the number of edges of G lying closer to v than to u. An efficient formula for calculating the PI index of phenylenes is given, and a simple relation is established between the PI index of a phenylene and of the corresponding hexagonal squeeze.  相似文献   

16.
Let G = (V,E) be a graph with n vertices and e edges. Denote V(G) = {v 1,v 2,...,v n }. The 2-degree of v i , denoted by t i , is the sum of degrees of the vertices adjacent to . Let σ i be the sum of the 2-degree of vertices adjacent to v i . In this paper, we present two sharp upper bounds for the energy of G in terms of n, e, t i , and σ i , from which we can get some known results. Also we give a sharp bound for the energy of a forest, from which we can improve some known results for trees.  相似文献   

17.
Coefficient identification problem for diffusion equation u t (x, t) = (D(x)u x (x, t)) x arising in chronoamperometry is studied. The adjoint problem approach is developed for the case when the output measured data is given in the form of left/right flux. Analytical formulas for determination of the values D(0), D(L) at the endpoints x = 0; L, of the unknown coefficient D(x), via the solution v(x, t) of the constant coefficient equation v t (x, t) = D v xx (x, t) is obtained. The integral identity relating solutions of the forward and corresponding adjoint problems is derived. This integral identity permits one to prove the monotonicity and invertibility of input-output map, as well as formulate the gradient of the cost functional via the solutions of the direct and adjoint problems.  相似文献   

18.
The Randić index R(G) of a graph G is the sum of the weights of all edges uv of G, where d(u) denotes the degree of the vertex u. In this paper, we first present a sharp lower bound on the Randić index of conjugated unicyclic graphs (unicyclic graphs with perfect matching). Also a sharp lower bound on the Randić index of unicyclic graphs is given in terms of the order and given size of matching.  相似文献   

19.
The spread s(G) of a graph G is defined as s(G) = max i,j i − λ j |, where the maximum is taken over all pairs of eigenvalues of G. Let U(n,k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and U *(n,k) the set of triangle-free graphs in U(n,k). In this paper, we determine the graphs with the largest and second largest spectral radius in U *(n,k), and the graph with the largest spread in U(n,k).   相似文献   

20.
Let G be an arbitrary graph with vertex set {1,2, …,N} and degrees diD, for fixed D and all i, then for the index R′(G) = ∑i < jdidjRij we show that We also show that the minimum of R′(G) over all N‐vertex graphs is attained for the star graph and its value is 2N2 ? 5N + 3. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号