首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We define a natural concept of duality for the -Hopf algebroids introduced by Etingof and Varchenko. We prove that the special case of the trigonometric SL(2) dynamical quantum group is self-dual, and may therefore be viewed as a deformation both of the function algebra F(SL(2)) and of the enveloping algebra U(sl(2)). Matrix elements of the self-duality in the Peter–Weyl basis are 6j-symbols; this leads to a new algebraic interpretation of the hexagon identity or quantum dynamical Yang–Baxter equation for quantum and classical 6j-symbols.  相似文献   

2.
We introduce operators of q-fractional integration through inverses of the Askey–Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q→1 the polynomials become polynomials in xy, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey–Wilson operator on an L2 space weighted by the weight function of the Askey–Wilson polynomials.  相似文献   

3.
We introduce a q-analogue of Wigner’s 9-j symbols following the notational scheme used by Wilson in identifying the 6-j symbols with Racah polynomials, which eventually led Askey and Wilson to obtain a q-analogue of them, namely, the q-Racah polynomials. Most importantly, we prove the orthogonality of our analogues in complete generality, as well as derive an explicit polynomial expression for these new functions.  相似文献   

4.
Elliptic 6j-symbols first appeared in connection with solvable models of statistical mechanics. They include many interesting limit cases, such as quantum 6j-symbols (or q-Racah polynomials) and Wilson’s biorthogonal 10 W 9 functions. We give an elementary construction of elliptic 6j-symbols, which immediately implies several of their main properties. As a consequence, we obtain a new algebraic interpretation of elliptic 6j-symbols in terms of Sklyanin algebra representations.  相似文献   

5.
The Askey–Wilson function transform is a q-analogue of the Jacobi function transform with kernel given by an explicit non-polynomial eigenfunction of the Askey–Wilson second order q-difference operator. The kernel is called the Askey–Wilson function. In this paper an explicit expansion formula for the Askey–Wilson function in terms of Askey–Wilson polynomials is proven. With this expansion formula at hand, the image under the Askey–Wilson function transform of an Askey–Wilson polynomial multiplied by an analogue of the Gaussian is computed explicitly. As a special case of these formulas a q-analogue (in one variable) of the Macdonald–Mehta integral is obtained, for which also two alternative, direct proofs are presented.  相似文献   

6.
A classical result on the expansion of an analytic function in a series of Jacobi polynomials is extended to a class of q-orthogonal polynomials containing the fundamental Askey–Wilson polynomials and their special cases. The function to be expanded has to be analytic inside an ellipse in the complex plane with foci at ±1. Some examples of explicit expansions are discussed.   相似文献   

7.
We introduce the Cauchy augmentation operator for basic hypergeometric series. Heine's transformation formula and Sears' transformation formula can be easily obtained by the symmetric property of some parameters in operator identities. The Cauchy operator involves two parameters, and it can be considered as a generalization of the operator T(bDq). Using this operator, we obtain extensions of the Askey–Wilson integral, the Askey–Roy integral, Sears' two-term summation formula, as well as the q-analogs of Barnes' lemmas. Finally, we find that the Cauchy operator is also suitable for the study of the bivariate Rogers–Szegö polynomials, or the continuous big q-Hermite polynomials.  相似文献   

8.
Matrix-valued spherical functions related to the quantum symmetric pair for the quantum analogue of \((\mathrm{SU}(2) \times \mathrm{SU}(2), \mathrm{diag})\) are introduced and studied in detail. The quantum symmetric pair is given in terms of a quantised universal enveloping algebra with a coideal subalgebra. The matrix-valued spherical functions give rise to matrix-valued orthogonal polynomials, which are matrix-valued analogues of a subfamily of Askey–Wilson polynomials. For these matrix-valued orthogonal polynomials, a number of properties are derived using this quantum group interpretation: the orthogonality relations from the Schur orthogonality relations, the three-term recurrence relation and the structure of the weight matrix in terms of Chebyshev polynomials from tensor product decompositions, and the matrix-valued Askey–Wilson type q-difference operators from the action of the Casimir elements. A more analytic study of the weight gives an explicit LDU-decomposition in terms of continuous q-ultraspherical polynomials. The LDU-decomposition gives the possibility to find explicit expressions of the matrix entries of the matrix-valued orthogonal polynomials in terms of continuous q-ultraspherical polynomials and q-Racah polynomials.  相似文献   

9.
In 1991 Tratnik derived two systems of multivariable orthogonal Racah polynomials and considered their limit cases. q-Extensions of these systems are derived, yielding systems of multivariable orthogonal q-Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases. Dedicated to Richard Askey on the occasion of his 70th birthday. 2000 Mathematics Subject Classification Primary—33D50; Secondary—33C50 Supported in part by NSERC grant #A6197.  相似文献   

10.
Dual generalized Bernstein basis   总被引:1,自引:0,他引:1  
The generalized Bernstein basis in the space Πn of polynomials of degree at most n, being an extension of the q-Bernstein basis introduced by Philips [Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511–518], is given by the formula [S. Lewanowicz, P. Woźny, Generalized Bernstein polynomials, BIT Numer. Math. 44 (2004) 63–78],
We give explicitly the dual basis functions for the polynomials , in terms of big q-Jacobi polynomials Pk(x;a,b,ω/q;q), a and b being parameters; the connection coefficients are evaluations of the q-Hahn polynomials. An inverse formula—relating big q-Jacobi, dual generalized Bernstein, and dual q-Hahn polynomials—is also given. Further, an alternative formula is given, representing the dual polynomial (0jn) as a linear combination of min(j,n-j)+1 big q-Jacobi polynomials with shifted parameters and argument. Finally, we give a recurrence relation satisfied by , as well as an identity which may be seen as an analogue of the extended Marsden's identity [R.N. Goldman, Dual polynomial bases, J. Approx. Theory 79 (1994) 311–346].  相似文献   

11.
In a recent paper Ismail et al. (Algebraic Methods and q-Special Functions (J.F. van Diejen and L. Vinet, eds.) CRM Proceding and Lecture Notes, Vol. 22, American Mathematical Society, 1999, pp. 183–200) have established a continuous orthogonality relation and some other properties of a 21-Bessel function on a q-quadratic grid. Dick Askey (private communication) suggested that the Bessel-type orthogonality found in Ismail et al. (1999) at the 21-level has really a general character and can be extended up to the 87-level. Very-well-poised 87-functions are known as a nonterminating version of the classical Askey–Wilson polynomials (SIAM J. Math. Anal. 10 (1979), 1008–1016; Memoirs Amer. Math. Soc. Number 319 (1985)). Askey's conjecture has been proved by the author in J. Phys. A: Math. Gen. 30 (1997), 5877–5885. In the present paper which is an extended version of Suslov (1997) we discuss in detail properties of the orthogonal 87-functions. Another type of the orthogonality relation for a very-well-poised 87-function was recently found by Askey et al. J. Comp. Appl. Math. 68 (1996), 25–55.  相似文献   

12.
In a previous paper, we explored the idea of parameter augmentation for basic hypergeometric series, which provides a method of provingq-summation and integral formula based special cases obtained by reducing some parameters to zero. In the present paper, we shall mainly deal with parameter augmentation forq-integrals such as the Askey–Wilson integral, the Nassrallah–Rahman integral, theq-integral form of Sears transformation, and Gasper's formula of the extension of the Askey–Roy integral. The parameter augmentation is realized by another operator, which leads to considerable simplications of some well knownq-summation and transformation formulas. A brief treatment of the Rogers–Szegö polynomials is also given.  相似文献   

13.
This paper answers a few questions about algebraic aspects of bialgebras, associated with the family of solutions of the quantum Yang–Baxter equation in Acta Appl. Math. 41 (1995), pp. 57–98. We describe the relations of the bialgebras associated with these solutions and the standard deformations of GLn and of the supergroup GL(m|n). We also show how the existence of zero divisors in some of these algebras are related to the combinatorics of their related matrix, providing a necessary and sufficient condition for the bialgebras to be a domain. We consider their Poincaré series, and we provide a Hopf algebra structure to quotients of these bialgebras in an explicit way. We discuss the problems involved with the lift of the Hopf algebra structure, working only by localization.  相似文献   

14.
The tensor product of a positive and a negative discrete series representation of the quantum algebra Uq(su(1,1)) decomposes as a direct integral over the principal unitary series representations. Discrete terms can appear, and these terms are a finite number of discrete series representations, or one complementary series representation. From the interpretation as overlap coefficients of little q-Jacobi functions and Al-Salam and Chihara polynomials in base q and base q–1, two closely related bilinear summation formulas for the Al-Salam and Chihara polynomials are derived. The formulas involve Askey-Wilson polynomials, continuous dual q-Hahn polynomials and little q-Jacobi functions. The realization of the discrete series as q-difference operators on the spaces of holomorphic and anti-holomorphic functions, leads to a bilinear generating function for a certain type of 21-series, which can be considered as a special case of the dual transmutation kernel for little q-Jacobi functions.  相似文献   

15.
For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q = 0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas. Dedicated to Dick Askey on the occasion of his seventieth birthday. 2000 Mathematics Subject Classification Primary—33D45, 33D80 Work done at KdV Institute, Amsterdam and supported by NWO, project number 613.006.573.  相似文献   

16.
Let Bn( f,q;x), n=1,2,… be q-Bernstein polynomials of a function f : [0,1]→C. The polynomials Bn( f,1;x) are classical Bernstein polynomials. For q≠1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: |z|<q+} the rate of convergence of {Bn( f,q;x)} to f(x) in the norm of C[0,1] has the order qn (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {Bnjn( f,q;x)}, where both n→∞ and jn→∞, are studied. It is shown that for q(0,1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of jn→∞.  相似文献   

17.
In this paper, we systematically recover the identities for the q-eta numbers ηk and the q-eta polynomials ηk(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000], which we define here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler’s approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175–192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz’s q-Bernoulli polynomials -polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here.  相似文献   

18.
Partial divided-difference equations and three-term recurrence relations satisfied by the bivariate Askey–Wilson and the bivariate q-Racah polynomials are computed in this work. By using limiting processes, partial divided (or q)-difference equations and three-term recurrence relations are also provided for each of the following families of orthogonal polynomials: the bivariate continuous dual q-Hahn, the bivariate Al-Salam-Chihara, the bivariate continuous q-Hahn, the bivariate q-Hahn, the bivariate dual q-Hahn, the bivariate q-Krawtchouk, the bivariate q-Meixner, and the bivariate q-Charlier polynomials.  相似文献   

19.
We introduce a q-differential operator Dxy on functions in two variables which turns out to be suitable for dealing with the homogeneous form of the q-binomial theorem as studied by Andrews, Goldman, and Rota, Roman, Ihrig, and Ismail, et al. The homogeneous versions of the q-binomial theorem and the Cauchy identity are often useful for their specializations of the two parameters. Using this operator, we derive an equivalent form of the Goldman–Rota binomial identity and show that it is a homogeneous generalization of the q-Vandermonde identity. Moreover, the inverse identity of Goldman and Rota also follows from our unified identity. We also obtain the q-Leibniz formula for this operator. In the last section, we introduce the homogeneous Rogers–Szegö polynomials and derive their generating function by using the homogeneous q-shift operator.  相似文献   

20.
We firstly establish the fourth order difference equation satisfied by the Laguerre-Hahn polynomials orthogonal on special non-uniform lattices in general case, secondly give it explicitly for the cases of polynomials r-associated to the classical polynomials orthogonal on linear, q-linear and q-nonlinear (Askey-Wilson) lattices, and thirdly give it semi-explicitly for the class one Laguerre-Hahn polynomials orthogonal on linear lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号