首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) methodology is proposed based on the integration of sliding mode control and adaptive interval type-2 fuzzy control for chaotic system. The AIT2FSMC system is comprised of a fuzzy control design and a hitting control design. In the fuzzy control design, an interval type-2 fuzzy controller is designed to mimic a feedback linearization (FL) control law. In the hitting control design, a hitting controller is designed to compensate the approximation error between the FL control law and the interval type-2 fuzzy controller. The parameters of the interval type-2 fuzzy controller, as well as the uncertainty bound of the approximation error, are tuned adaptively. The adaptive laws are derived in the sense of Lyapunov stability theorem, thus the stability of the system can be guaranteed. The proposed control system compared to adaptive fuzzy sliding mode control (AFSMC). Simulation results show that the proposed control systems can achieve favorable performance and robust with respect to system uncertainties and external disturbances.  相似文献   

2.
In this paper, we use sliding mode control integrated with an interval type-2 fuzzy system for synchronization of two different chaotic systems in presence of system unmodeling and external disturbances. To reduce the chattering and improve the robustness of reaching phase of the Sliding Mode Control (SMC), an interval fuzzy type-2 logic controller is used. In addition, an adaptive interval type-2 fuzzy inference approximator is proposed (as equivalent control part of SMC) to approximate the unknown parts of the uncertain chaotic system. Using type-2 fuzzy systems makes more effective synchronization results in presence of system uncertainty and disturbances in comparison with type-1 fuzzy approximators. The stability analysis for the proposed control scheme is provided, and simulation results compare the performance of interval type-2 fuzzy and type-1 fuzzy controllers to verify the effectiveness of the proposed method.  相似文献   

3.
The main goal of this paper is to propose the adaptive nonsingular terminal sliding mode controllers for complete synchronization (CS) and anti-synchronization (AS) between two identical ?? 6 Van der Pol or Duffing oscillators with presentations of system uncertainties and external disturbances. Unlike directly eliminating the nonlinear items of synchronized error system for sliding mode control schemes in the literature, the proposed adaptive controllers can tackle the nonlinear dynamics without active cancellation. The controllers can be implemented without known bounds of system uncertainties and external disturbances. Meanwhile, the feedback gains are not determined in advance but updated by the adaptive rules. Sufficient conditions are given based on the Lyapunov stability theorem and numerical simulations are performed to verify the effectiveness of presented schemes. The results show that the chaotic synchronization can be achieved accurately by the chattering free control.  相似文献   

4.
In this paper, a decentralized adaptive control scheme for multi-robot coverage is proposed. This control method is designed based on centroidal Voronoi configuration integrated with robust adaptive fuzzy control techniques. We consider simple single integrator mobile robots used for covering dynamical environments, where an adaptive fuzzy logic system is used to approximate the unknown parts of control law. A robust coverage criterion is used to attenuate the adaptive fuzzy approximation error and measurement noises to a prescribed level. Therefore, the robots motion is forced to obey solutions of a coverage optimization problem. The advantages of the proposed controller can be listed as robustness to external disturbances, computation uncertainties, and measurement noises, while applicability on dynamical environments. A Lyapunov-function based proof is given of robust stability, i.e. convergence to the optimal positions with bounded error. Finally, simulation results are demonstrated for a swarm coverage problem simultaneous with tracking mobile intruders.  相似文献   

5.
In this paper, a fuzzy logic controller equipped with training algorithms is developed such that the H ?? tracking performance should be satisfied for a model-free nonlinear fractional order time delay system which is infinite dimensional in nature and time delay is a source of instability. In order to deal with the linguistic uncertainties caused from delay terms, the adaptive time delay fuzzy logic system is constructed to approximate the unknown time delay system functions. By incorporating Lyapunov stability criterion with H ?? tracking design technique, the free parameters of the adaptive fuzzy controller can be tuned on line by output feedback control law and adaptive law. Moreover, the tracking error and external disturbance can be attenuated to arbitrary desired level. The numerical results show the effectiveness of the proposed adaptive H ?? tracking scheme.  相似文献   

6.
A new adaptive synchronization scheme by pragmatical asymptotically stability theorem is proposed in this paper. Based on this theorem and nonlinear control theory, a new adaptive synchronization scheme to design controllers can be obtained and especially the constraints for minimum values of feedback gain K in controllers can be derived. This new strategy shows that the constraint values of feedback gain K are related to the error of unknown and estimated parameters if the goal system is given. Through this new strategy, an appropriate feedback gain K can be always decided easily to obtain controllers achieving adaptive synchronization. Two identical Lorenz systems with different initial conditions and two completely different nonlinear systems with different orders, augmented R?ssler??s system and Mathieu?Cvan der Pol system, are used for illustrations to demonstrate the efficiency and effectiveness of the new adaptive scheme in numerical simulation results.  相似文献   

7.
In this paper, a fuzzy adaptive output feedback control scheme based on fuzzy adaptive observer is proposed to control robotic systems with parameter uncertainties and external disturbances. It is supposed that only the joint positions of the robotic system can be measured, whereas the joint velocities are unknown and unmeasured. First, a fuzzy adaptive nonlinear observer is presented to estimate the joint velocities of robotic systems, and the observation errors are analyzed using strictly positive real approach and Lyapunov stability theory. Next, based on the observed joint velocities, a fuzzy adaptive output feedback controller is developed to guarantee stability of closed-loop system and achieve a certain tracking performance. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded. Finally, simulation examples on a two-link robotic manipulator are presented to show the efficiency of the proposed method.  相似文献   

8.
Unlike taking the same external electrical stimulation to discuss chaotic synchronization in the literature, the synchronization between two uncouple FitzHugh?CNagumo (FHN) neurons with different ionic currents and external electrical stimulations is considered. The main contribution of this study is the application of a robust adaptive sliding-mode controller instead of the active elimination. The proposed sliding mode controller associated with time varying feedback gains cannot only tackle the system uncertainties and external disturbances, but also compensate for the mismatch nonlinear dynamics of synchronized error system without direct cancellation. Meanwhile, these feedback gains are not determined in advance but updated by the adaptive laws. Sufficient conditions to guarantee the stable synchronization are given in the sense of the Lyapunov stability theorem. In addition, numerical simulations are also performed to verify the effectiveness of presented scheme.  相似文献   

9.
The paper proposes a solution to the problem of observer-based adaptive fuzzy control for MIMO nonlinear dynamical systems (e.g. robotic manipulators). An adaptive fuzzy controller is designed for a class of nonlinear systems, under the constraint that only the system’s output is measured and that the system’s model is unknown. The control algorithm aims at satisfying the $H_\infty $ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the MIMO system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system’s parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. Moreover, since only the system’s output is measurable the complete state vector has to be reconstructed with the use of a state observer. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis, it is proven that the proposed observer-based adaptive fuzzy control scheme results in $H_{\infty }$ tracking performance.  相似文献   

10.
This paper proposes a novel robust fractional-order sliding mode approach for the synchronization of two fractional-order chaotic systems in the presence of system parameter uncertain and external disturbance. An adaptive sliding mode controller is constructed resorted to the designed fractional integral type sliding surface. Based on the Lyapunov stability theorem, the stability of the closed error system is proved. Finally, a numerical simulation is performed to illustrate the effectiveness of the proposed method.  相似文献   

11.
A new fuzzy observer for lag synchronization is given in this paper. By investi- gating synchronization of chaotic systems, the structure of drive-response lag synchronization for fuzzy chaos system based on fuzzy observer is proposed. A new lag synchronization criterion is derived using the Lyapunov stability theorem, in which control gains are obtained under the LMI condition. The proposed approach is applied to the well-known Chen's systems. A simulation example is presented to illustrate its effectiveness.  相似文献   

12.
This paper presents a novel discrete adaptive fuzzy controller for electrically driven robot manipulators. It addresses how to overcome the nonlinearity, uncertainties, discretizing error and approximation error of the fuzzy system for asymptotic tracking control of robotic manipulators. The proposed controller is model-free in the form of discrete Mamdani fuzzy controller. The parameters of fuzzy controller are adaptively tuned using an adaptive mechanism derived by stability analysis. A robust control term is used to compensate the approximation error of the fuzzy system for asymptotic tracking of a desired trajectory. The controller is robust against all uncertainties associated with the robot manipulator and actuators. It is easy to implement since it requires only the joint position feedback. Compared with fuzzy controllers which employ all states to guarantee stability, the proposed controller is very simpler. Stability analysis and simulation results show its efficiency in the tracking control.  相似文献   

13.
In this paper, the synchronization of Takagi–Sugeno (T-S) fuzzy complex networks with time-varying delays and adaptive coupling weights is studied. Using the pinning control and adaptive feedback strategy, a new general class of complex networks with fuzzy logic is proposed and its synchronization is investigated in terms of linear matrix inequalities (LMIs). The adaptive update law of coupling weight is only related to the dynamical behaviors of directly connected nodes. Based on the Lyapunov stability theory, it is proven that the synchronization of the addressed network can be achieved under those control strategies. Finally, two numerical examples are given to verify the effectiveness of our theoretical results.  相似文献   

14.
In this paper, a projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive controller is investigated for a projective synchronization of uncertain multivariable chaotic systems. The adaptive fuzzy-logic systems are used to approximate the unknown functions. A decomposition property of the control gain matrix is used in the controller design and the stability analysis. A Lyapunov approach is employed to derive the parameter adaptation laws and prove the boundedness of all signals of the closed-loop system as well as the exponential convergence of the synchronization errors to an adjustable region. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.  相似文献   

15.
This paper proposes an intelligent quadratic optimal control scheme via linear matrix inequality (LMI) approach for the synchronization of uncertain chaotic systems with both external disturbances and parametric perturbations. First, a four-layered neural fuzzy network (NFN) identifier is constructed to estimate system nonlinear dynamics. Based on the NFN identifier, an intelligent quadratic optimal controller is developed with robust hybrid control scheme, in which H ?? optimal control and variable structure control (VSC) are embedded to attenuate the effects of external disturbances and parametric perturbations. The adaptive tuning laws of network parameters are derived in the sense of the Lyapunov synthesis approach to ensure network convergence, and the sufficient criterion for existence of the controller is formulated in the linear matrix inequality (LMI) form to guarantee the quadratic optimal synchronization performance. Finally, a numerical simulation example is illustrated by the chaotic Chua??s circuit system to demonstrate the effectiveness of our scheme.  相似文献   

16.
This work is devoted to investigating the complete synchronization of two identical delay hyperchaotic Lü systems with different initial conditions, and a simple complete synchronization scheme only with a single linear input is proposed. Based on the Lyapunov stability theory, sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical delay hyperchaotic Lü systems with unknown parameters is also studied. A?single input adaptive synchronization controller is proposed, and the adaptive parameter update laws are developed. Numerical simulation results are presented to demonstrate the effectiveness of the proposed chaos synchronization scheme.  相似文献   

17.
This paper proposes a robust adaptive controller design method for synchronization of a complex dynamical network with uncertainty and disturbance. A fuzzy disturbance observer is used to estimate the overall disturbances without any prior knowledge about them. The proposed control method globally asymptotically synchronizes the network using adaptation laws obtained by using Lyapunov stability theory. The proposed method is applied to two chaotic systems and the results show the effectiveness of the approach.  相似文献   

18.
This paper proposes a robust adaptive backstepping synchronization method for a class of uncertain chaotic systems. Unknown factors including system uncertainties and external disturbances are estimated by a fuzzy disturbance observer. By use of the fuzzy disturbance observer, any prior information about the unknown factors is not need. The proposed method using the estimated values guarantees the global synchronization for chaotic systems with mismatched uncertainties in the sense of uniform ultimate boundedness. Finally, numerical examples are presented to show the effectiveness of the method.  相似文献   

19.
Kuz’menko  A. A. 《Nonlinear dynamics》2022,109(3):1763-1775

Synchronization of chaotic systems is considered to be a common engineering problem. However, the proposed laws of synchronization control do not always provide robustness toward the parametric perturbations. The purpose of this article is to show the use of synergy-cybernetic approach for the construction of robust law for Arneodo chaotic systems synchronization. As the main method of design of robust control, the method of design of control with forced sliding mode of the synergetic control theory is considered. To illustrate the effectiveness of the proposed law, in this article it is compared with the classical sliding mode control and adaptive backstepping. The distinctive features of suggested robust control law are the more good compensation of parametric perturbations (better performance indexes—the root-mean-square error (RMSE), average absolute value (AVG) of error) without designing perturbation observers, the ability to exclude the chattering effect, less energy consuming and a simpler analysis of the stability of a closed-loop system. The study of the proposed control law and the change of its parameters and the place of parametric perturbation’s application is carried out. It is possible to significantly reduce the synchronization error and RMSE, as well as AVG of error by reducing some parameters, but that leads to an increase in control signal amplitude. The place of application of parametric disturbances (slave or master system) has no effect on the RMSE and AVG of error. Offered approach will allow a new consideration for the design of robust control laws for chaotic systems, taking into account the ideas of directed self-organization and robust control. It can be used for synchronization other chaotic systems.

  相似文献   

20.
This paper studies the robust adaptive full state hybrid projective synchronization (FSHPS) scheme for a class of chaotic complex systems with uncertain parameters and external disturbances. By introducing a compensator and using nonlinear control and adaptive control, the robust adaptive FSHPS scheme is derived, which can eliminate the influence of uncertainties effectively and achieve adaptive FSHPS of the chaotic (hyperchaotic) complex systems asymptotically with a small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions of realizing FSHPS are derived as well. Moreover, we also discuss the case that parameters of chaotic complex system are complex. Finally, the complex Chen system and Lü system, and the hyperchaotic complex Lorenz system are taken as two examples and the numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号