首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recombination dynamics of ion pairs generated upon electron transfer quenching of perylene in the first singlet excited state by tetracyanoethylene in acetonitrile is quantitatively described by the extended unified theory of photoionization/recombination. The extension incorporates the hot recombination of the ion pair passing through the level-crossing point during its diffusive motion along the reaction coordinate down to the equilibrium state. The ultrafast hot recombination vastly reduces the yield of equilibrated ion pairs subjected to subsequent thermal charge recombination and separation into free ions. The relatively successful fit of the theory to the experimentally measured kinetics of ion accumulation/recombination and free ion yield represents a firm justification of hot recombination of about 90% of primary generated ion pairs.  相似文献   

2.
In the framework of a recently suggested recombination model it is shown that an increase of the initial ion concentration caused by higher irradiation doses leads to an increase of the fraction of ions recombining in the volume. This effect is represented for two different rate functions R/t/ assumed to describe the recombination rate for single ion pairs. Finally consequences of the volume recombination effect on the product yield of a competitive ion-scavenger reaction and for the determination of the real survival probability of the isolated ion pairs are discussed.  相似文献   

3.
We have studied the magnetic field effects (MFEs) on the charge-transfer fluorescence and transient photocurrent of a 1,2,4,5-tetracyanobenzene-doped poly(N-vinylcarbazole) film, which reflect the recombination and escape yields of the carriers, respectively. The recombination yield dependence of the external magnetic field (B) clearly shows two types of the MFEs, growth with increasing B due to the hyperfine mechanism (HFM) and a negative dip due to the level-crossing mechanism (LCM). On the other hand, the escape yield indicates complementary MFEs with a sharp decrease in yield with increasing B and then a positive dip. Simultaneous observation of the HFM- and LCM-MFEs proves the stepwise hole-hopping mechanism rather the long-range hole-jumping one. The quantitative analysis of the recombination and escape MFEs is performed using the stochastic Liouville equations (SLE) for a one-dimensional lattice model in which the stepwise hole hops take place between the nearest neighbor carbazole units with spin conservation. The SLE analysis provides the recombination and hole transfer rate constants of 7.0 x 10(7) and 4.5 x 10(8) s(-1), respectively. The boundary site number for the ion pairs in the one-dimensional model is estimated by the best fit to the experimental results. The interionic distance of the boundary ion pair in the one-dimensional model including eight sites agrees with the thermalization distance in the Onsager model. Hence, it is concluded that the elementary processes in the Onsager model applied to molecular amorphous solids are the stepwise hole hops rather than a long-range hole jump.  相似文献   

4.
The spin-spin exchange interaction, 2J, in a radical ion pair produced by a photoinduced electron transfer reaction can provide a direct measure of the electronic coupling matrix element, V, for the subsequent charge recombination reaction. We have developed a series of dyad and triad donor-acceptor molecules in which 2J is measured directly as a function of incremental changes in their structures. In the dyads the chromophoric electron donors 4-(N-pyrrolidinyl)- and 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, 5ANI and 6ANI, respectively, and a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor are linked to the meta positions of a phenyl spacer to yield 5ANI-Ph-NI and 6ANI-Ph-NI. In the triads the same structure is used, except that the piperidine in 6ANI is replaced by a piperazine in which a para-X-phenyl, where X = H, F, Cl, MeO, and Me(2)N, is attached to the N' nitrogen to form a para-X-aniline (XAn) donor to give XAn-6ANI-Ph-NI. Photoexcitation yields the respective 5ANI(+)-Ph-NI(-), 6ANI(+)-Ph-NI(-), and XAn(+)-6ANI-Ph-NI(-) singlet radical ion pair states, which undergo subsequent radical pair intersystem crossing followed by charge recombination to yield (3)NI. The radical ion pair distances within the dyads are about 11-12 A, whereas those in the triads are about approximately 16-19 A. The degree of delocalization of charge (and spin) density onto the aniline, and therefore the average distance between the radical ion pairs, is modulated by the para substituent. The (3)NI yields monitored spectroscopically exhibit resonances as a function of magnetic field, which directly yield 2J for the radical ion pairs. A plot of ln 2J versus r(DA), the distance between the centroids of the spin distributions of the two radicals that comprise the pair, yields a slope of -0.5 +/- 0.1. Since both 2J and k(CR), the rate of radical ion pair recombination, are directly proportional to V(2), the observed distance dependence of 2J shows directly that the recombination rates in these molecules obey an exponential distance dependence with beta = 0.5 +/- 0.1 A(-)(1). This technique is very sensitive to small changes in the electronic interaction between the two radicals and can be used to probe subtle structural differences between radical ion pairs produced from photoinduced electron transfer reactions.  相似文献   

5.
6.
《Chemical physics》2005,317(1):27-34
The free energy dependence of the electro-chemiluminescence quantum yield is specified, with the Markovian encounter theory accounting for the reversibility of triplet production competing with the irreversible recombination to the ground state. It is shown that diffusional ion recombination is highly inhomogeneous in space. It proceeds at either large positive ionization free energy (mainly to the triplet product) or at large negative free energy when recombination to the ground state dominates. On the contrary at medium free energies, the quasi-resonant generation of triplets is under kinetic control and therefore much more homogeneous. In this case, both recombination products are generated in comparable amounts.The multiple reversible ionization is shown to act as an independent quenching mechanism previously unknown. The role of the triplet quenching at the electrode is also specified. These effects reduce noticeably the luminescence quantum yield but only at larger triplet life times and in different free energy regions.  相似文献   

7.
The dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing diphenylacetylene-4,4'-dicarboxamide linkers have been investigated by means of femtosecond time-resolved transient absorption spectroscopy. The lowest excited singlet state of the linker is capable of oxidizing nearest neighbor adenine as well as guanine. A large wavelength shift in the transient absorption spectrum accompanies the conversion of the singlet linker to its anion radical, facilitating the investigation of electron-transfer dynamics. The rate constants for charge separation are dependent upon the oxidation potentials of the neighboring nucleobase donors but not upon the identity of nonnearest neighbors. Thus, the charge separation processes yield a contact radical ion pair in which the positive charge is localized on the neighboring nucleobase. Rate constants for charge recombination are dependent upon the identity of the first and second nearest-neighbor nucleobases but not more remote bases. This dependence is attributed to stabilization of the contact radical ion pair by interaction with its nearest neighbor. The absence of charge migration to form a base-pair separated radical ion pair is a consequence of Coulombic attraction in the contact radical ion pair and the low effective dielectric constant (epsilon < 7) experienced by the contact radical ion pair. Photoinduced charge injection to form a base-pair separated radical ion pair is necessary in order to observe charge migration.  相似文献   

8.
The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.  相似文献   

9.
To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.  相似文献   

10.
The photodetachment of aqueous hydroxide (OH(?)(aq) and OD(?)(aq)) is studied using femtosecond pump?probe and pump?repump?probe spectroscopy. The electron is detached after excitation of the hydroxide ion to a charge-transfer-to-solvent (CTTS) state at 202 nm. An early intermediate is observed that builds up within 160 fs and is assigned to nonequilibrated OH?electron pairs. The subsequent dynamics are governed by thermalization, partial recombination, and dissociation of the pairs, yielding the final hydrated electrons and hydroxyl radicals. An additional pulse at 810 nm is used for secondary excitation of the intermediate species so that more insight is gained into the recombination process(es). Using this technique we observe a novel geminate recombination channel of OH with adjacent hydrated electrons. This channel leads to ultrafast quenching (700 fs) of almost half the initial number of radicals. The fast mechanism displays an isotope effect of 1.4 (for OD(?)(aq) quantum yield 35%, time constant 1.0 ps). This process was not observed in similar experiments on aqueous bromide and seems to be related to the special properties of the hydroxide ion and its local H-bonding environment. Our findings underline the high reactivity of the prehydrated electron.  相似文献   

11.
许慧君  薛念念 《化学学报》1987,45(6):551-557
本文研究了各种金属酞菁以及带有不同取代基的锌酞菁敏化光还原硝基化合物的反应。确定了光敏还原反应的主要产物是氨基和羟氨基化合物;羟氨基化合物与亚硝基化合物通过暗反应缩合生成偶氮N-氧化物。测定了它们的氧化还原电位和荧光量子产率。从敏化光还原反应的量子产率及荧光猝灭与硝基化合物浓度的依赖关系,计算出各种金属酞菁激发单重态与三重态的敏化效率。受激发金属酞菁将电子转移至硝基化合物是敏化光还原反应的起始过程。电子转移生成离子自由基对后,电荷分离与逆电子转移过程相互竞争。由于自旋选择规则的限制,激发三重态的敏化效率一般比激发单重态的敏化效率高。为了提高敏化光还原反应的效率,除选择三重态产率较高的敏化剂外,改变敏化剂的结构可提高敏化剂激发单重态的敏化效率,从而提高敏化光还原反应的量子产率.  相似文献   

12.
Metal phthalocyanine-sensitized photoreduction of dimethyl 4-nitrophthalate with ascorbic acid has been investigated. The primary photoreaction products are the corresponding amino-and hydroxylamino-compounds. The azoxy-compound is formed by coupling of the nitrosocompound with hydroxylamino-compound in the presence of air through secondary dark reaction. The redox potential and fluorescence quantum yield are also determined. The variation of the quantum yield of the sensitized photoreduction, the relative fluorescence quantum yield and their product with the concentration of nitro-compound has been examined. The efficiency of photoreduction sensitized by the excited singlet and triplet state of metal phthalocyanine has been also calculated. It is believed that electron transfer from the excited metal phthalocyanine to the nitro-compound is the initial process in the sensitized photoreduction. Quenching by electron transfer involves creation of an ion pair. Charge separation and back electron transfer is then a competitive process. Due to the spin selection rules, the efficiency of photoreduction sensitized by excited triplet state of metal phthalocyanine is higher than excited singlet state. Thus, a necessary requirement for a good sensitizer is that the triplet state is populated in high yield. An alternative way and also the aim of our work is to design a suitable phthalocyanine skeleton to overcome geminate recombination of the ion pair, in order to increase the efficiency of photoreduction sensitized by sir glet excited state of the sensitizer, so as to increase the quantum yield of the total sensitized photoreduction.  相似文献   

13.
The Q band of photosynthetic thermoluminescence, measured in the presence of a herbicide that blocks electron transfer from PSII, is associated with recombination of the S(2)Q(A)(-) charge pair. The same charge recombination reaction can be monitored with chlorophyll fluorescence. It has been shown that the recombination occurs via three competing routes of which one produces luminescence. In the present study, we measured the thermoluminescence Q band and the decay of chlorophyll fluorescence yield after a single turnover flash at different temperatures from spinach thylakoids. The data were analyzed using the commonly used Arrhenius theory, the Eyring rate theory and the Marcus theory of electron transfer. The fitting error was minimized for both thermoluminescence and fluorescence by adjusting the global, phenomenological constants obtained when the reaction rate theories were applied to the multi-step recombination reaction. For chlorophyll fluorescence, all three theories give decent fits. The peak position of the thermoluminescence Q band is correct by all theories but the form of the Q band is somewhat different in curves predicted by the three theories. The Eyring and Marcus theories give good fits for the decreasing part of the thermoluminescence curve and Marcus theory gives the closest fit for the rising part.  相似文献   

14.
The ultrafast ground state recovery (GSR) dynamics of the radical cation of perylene, Pe(*+), generated upon bimolecular photoinduced electron transfer in acetonitrile, has been investigated using pump-pump-probe spectroscopy. With 1,4-dicyanobenzene as electron acceptor, the free ion yield is substantial and the GSR dynamics of Pe(*+) was found to depend on the time delay between the first and second pump pulses, Deltat(12), i.e., on the "age" of the ion. At short Deltat(12), the GSR dynamics is biphasic, and at Deltat(12) larger than about 500 ps, it becomes exponential with a time constant around 3 ps. With trans-1,2-dicyanoethylene as acceptor, the free ion yield is essentially zero and the GSR dynamics of Pe(*+) remains biphasic independently of Deltat(12). The change of dynamics observed with 1,4-dicyanobenzene is ascribed to the transition from paired to free solvated ion, because in the pair, the excited ion has an additional decay channel to the ground state, i.e., charge recombination followed by charge separation. The rate constants deduced from the analysis of these GSR dynamics are all fully consistent with this hypothesis.  相似文献   

15.
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.  相似文献   

16.
Ion recombination in matrix-assisted laser desorption/ionization (MALDI) is as important as any ion formation process in determining the quantity of ions observed but has received comparatively little attention. Molecular dynamics simulations are used here to investigate some models for recombination, including a Langevin-type model, a soft threshold model and a tunneling model. The latter was found to be superior due to its foundations in a widespread physical phenomenon, and its lack of excessive sensitivity to parameter choice. Tunneling recombination in the Marcus inverted region may be a major reason why MALDI is a viable analytical method, by allowing ion formation to exceed ion loss on the time scale of the plume expansion. Ion velocities, photoacoustic transients and pump-probe measurements might be used to investigate the role of recombination in different MALDI matrices, and to select new matrices.  相似文献   

17.
α-Radiolysis of N,N,N′,N′-tetraoctyldiglycolamide (TODGA) in n-dodecane was investigated by the irradiation with helium ion beam provided by a tandem accelerator. The radiation chemical yield for the degradation of TODGA by helium ion beam irradiation was less than that by γ-rays irradiation. It is considered that the radical cations of n-dodecane, which contribute to the charge transfer reaction with the TODGA molecules, decrease by recombination in track by high LET radiations such as α-particles.  相似文献   

18.
We have synthesized a series of structurally related, covalently linked electron donor-acceptor triads having highly restricted conformations to study the effects of radical ion pair (RP) structure, energetics, and solvation on charge recombination. The chromophoric electron acceptor in these triads is a 4-aminonaphthalene-1,8-dicarboximide (6ANI), in which the 4-amine nitrogen atom is part of a piperazine ring. The second nitrogen atom of the piperazine ring is part of a para-substituted aniline donor, where the para substituents are X = H, OMe, and NMe(2). The imide group of 6ANI is linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) electron acceptor across a phenyl spacer in a meta relationship. The triads undergo two-step photoinduced electron transfer to yield their respective XAn(*)(+)-6ANI-Ph-NI(*)(-) RP states, which undergo radical pair intersystem crossing followed by charge recombination to yield (3)NI. Time-resolved electron paramagnetic resonance experiments on the spin-polarized RPs and triplet states carried out in toluene and in E-7, a mixture of nematic liquid crystals (LCs), show that for all three triads, the XAn(*)(+)-6ANI-Ph-NI(*)(-) RPs are correlated radical pairs and directly yield values of the spin-spin exchange interaction, J, and the dipolar interaction, D. The values of J are all about -1 mT and show that the LC environment most likely enforces the chair conformation at the piperazine ring, for which the RP distance is larger than that for the corresponding boat conformation. The values of D yield effective RP distances that agree well with those calculated earlier from the spin distributions of the radical ions. Within the LC, changing the temperature shows that the CR mechanism can be changed significantly as the energy levels of the RPs change relative to that of the recombination triplet.  相似文献   

19.
We have derived a general analytical expression for the high field recombination yield of a geminate radical pair (RP) that diffuses freely and is separated initially. The dependence of the recombination yield on the initial separation is obtained by a simple extention of the previously published Green's function method. An explicit expression is derived for diffusion controlled recombination through the singlet channel and it incorporates Zeeman and hyperfine interactions, intraradical relaxation (both transversal and longitudinal), and homogeneous scavenging.  相似文献   

20.
The photoinduced electron-transfer reaction of chrysene with isomers of dicyanobenzene is used to demonstrate the sensitivity of a radical recombination reaction to the orientation and frequency (5-50 MHz) of a approximately 300 muT radio frequency magnetic field in the presence of a 0-4 mT static magnetic field. The recombination yield is detected via the fluorescence of the exciplex formed exclusively from the electronic singlet state of the radical ion pair Chr*+/DCB*-. Magnetic field effects are simulated using a modified version of the gamma-COMPUTE algorithm, devised for the simulation of magic angle spinning NMR spectra of powdered samples. The response of a chemical or biological system to simultaneously applied radio frequency and static or extremely low-frequency magnetic fields could form the basis for a diagnostic test for the operation of the radical pair mechanism that would not require prior knowledge of the nature and properties of the radical reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号