首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Here, soft X‐ray synchrotron radiation transmitted through microchannel plates is studied experimentally. Fine structures of reflection and XANES Si L‐edge spectra detected on the exit of silicon glass microcapillary structures under conditions of total X‐ray reflection are presented and analyzed. The phenomenon of the interaction of channeling radiation with unoccupied electronic states and propagation of X‐ray fluorescence excited in the microchannels is revealed. Investigations of the interaction of monochromatic radiation with the inner‐shell capillary surface and propagation of fluorescence radiation through hollow glass capillary waveguides contribute to the development of novel X‐ray focusing devices in the future.  相似文献   

2.
The use of in situ time‐resolved dispersive X‐ray absorption spectroscopy (DXAS) to monitor the formation of Cu2(OH)3Cl particles in an aqueous solution is reported. The measurements were performed using a dedicated reaction cell, which enabled the evolution of the Cu K‐edge X‐ray absorption near‐edge spectroscopy to be followed during mild chemical synthesis. The formed Cu2(OH)3Cl particles were also characterized by synchrotron‐radiation‐excited X‐ray photoelectron spectroscopy, X‐ray diffraction and scanning electron microscopy. The influence of polyvinylpyrrolidone (PVP) on the electronic and structural properties of the formed particles was investigated. The results indicate clearly the formation of Cu2(OH)3Cl, with or without the use of PVP, which presents very similar crystalline structures in the long‐range order. However, depending on the reaction, dramatic differences were observed by in situ DXAS in the vicinities of the Cu atoms.  相似文献   

3.
The protection of organic and hybrid organic–inorganic materials from X‐ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C60 gives a significant reduction of damage upon exposure to hard X‐rays generated by a synchrotron source. At low X‐ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C60 into fullerol and a bleaching of the radical sinking properties is observed.  相似文献   

4.
Pd/Y multilayers are high‐reflectance mirrors designed to work in the 7.5–11 nm wavelength range. Samples, prepared by magnetron sputtering, are deposited with or without B4C barrier layers located at the interfaces of the Pd and Y layers to reduce interdiffusion, which is expected from calculating the mixing enthalpy of Pd and Y. Grazing‐incident X‐ray reflectometry is used to characterize these multilayers. B4C barrier layers are found to be effective in reducing Pd–Y interdiffusion. Details of the composition of the multilayers are revealed by hard X‐ray photoemission spectroscopy with X‐ray standing wave effects. This consists of measuring the photoemission intensity from the samples by performing an angular scan in the region corresponding to the multilayer period and an incident photon energy according to Bragg's law. The experimental results indicate that Pd does not chemically react with B nor C at the Pd–B4C interface while Y does react at the Y–B4C interface. The formation of Y–B or Y–C chemical compounds could be the reason why the interfaces are stabilized. By comparing the experimentally obtained angular variation of the characteristic photoemission with theoretical calculations, the depth distribution of each component element can be interpreted.  相似文献   

5.
Inelastic X‐ray scattering instruments in operation at third‐generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high‐energy‐resolution X‐ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in‐line high‐resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X‐ray scattering instruments are presented.  相似文献   

6.
The morphological change of silver nano‐particles (AgNPs) exposed to an intense synchrotron X‐ray beam was investigated for the purpose of direct nano‐scale patterning of metal thin films. AgNPs irradiated by hard X‐rays in oxygen ambient were oxidized and migrated out of the illuminated region. The observed X‐ray induced oxidation was utilized to fabricate nano‐scale metal line patterns using sectioned WSi2/Si multilayers as masks. Lines with a width as small as 21 nm were successfully fabricated on Ag films on silicon nitride. Au/Ag nano‐lines were also fabricated using the proposed method.  相似文献   

7.
This work reports an unconventional defect engineering approach using synchrotron‐radiation‐based X‐rays on ceria nanocrystal catalysts of particle sizes 4.4–10.6 nm. The generation of a large number of oxygen‐vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high‐intensity synchrotron X‐ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5–7.8 keV and photon fluxes up to 1.53 × 1012 photons s?1. The experimentally observed cation reduction was theoretically explained by a first‐principles formation‐energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X‐ray‐excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y‐doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X‐ray‐induced OVD generating process. Both the core‐hole‐dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X‐ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical‐property modification.  相似文献   

8.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

9.
X‐ray radiolysis of a Cu(CH3COO)2 solution was observed to produce caltrop‐shaped particles of cupric oxide (CuO, Cu2O), which were characterized using high‐resolution scanning electron microscopy and micro‐Raman spectrometry. X‐ray irradiation from a synchrotron source drove the room‐temperature synthesis of submicrometer‐ and micrometer‐scale cupric oxide caltrop particles from an aqueous Cu(CH3COO)2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X‐ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.  相似文献   

10.
A quantitative analysis of the crucial characteristics of currently used and promising materials for X‐ray refractive optics is performed in the extended energy range 8–100 keV. According to the examined parameters, beryllium is the material of choice for X‐ray compound refractive lenses (CRLs) in the energy range 8–25 keV. At higher energies the use of CRLs made of diamond and the cubic phase of boron nitride (c‐BN) is beneficial. It was demonstrated that the presence of the elements of the fourth (or higher) period has a fatal effect on the functional X‐ray properties even if low‐Z elements dominate in the compound, like in YB66. Macroscopic properties are discussed: much higher melting points and thermal conductivities of C and c‐BN enable them to be used at the new generation of synchrotron radiation sources and X‐ray free‐electron lasers. The role of crystal and internal structure is discussed: materials with high density are preferable for refractive applications while less dense phases are suitable for X‐ray windows. Single‐crystal or amorphous glass‐like materials based on Li, Be, B or C that are free of diffuse scattering from grain boundaries, voids and inclusions are the best candidates for applications of highly coherent X‐ray beams.  相似文献   

11.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

12.
The characterization of Mg–Co–Zr tri‐layer stacks using X‐ray fluorescence induced by X‐ray standing waves, in both the grazing‐incidence (GI) and the grazing‐exit (GE) modes, is presented. The introduction of a slit in the direction of the detector improves the angular resolution by a factor of two and significantly improves the sensitivity of the technique for the chemical characterization of the buried interfaces. By observing the intensity variations of the Mg Kα and Co Lα characteristic emissions as a function of the incident (GI mode) or detection (GE mode) angle, it is shown that the interfaces of the Si/[Mg/Co/Zr]×30 multilayer are abrupt, whereas in the Si/[Mg/Zr/Co]×30 multilayer a strong intermixing occurs at the Co‐on‐Zr interfaces. An explanation of this opposite behavior of the Co‐on‐Zr and Zr‐on‐Co interfaces is given by the calculation of the mixing enthalpies of the Co–Mg, Co–Zr and Mg–Zr systems, which shows that the Co–Zr system presents a negative value and the other two systems present positive values. Together with the difference of the surface free energies of Zr and Co, this leads to the Mg/Zr/Co system being considered as a Mg/CoxZry bi‐layer stack, with x/y estimated around 3.5.  相似文献   

13.
A systematic study is presented in which multilayers of different composition (W/Si, Mo/Si, Pd/B4C), periodicity (from 2.5 to 5.5 nm) and number of layers have been characterized. In particular, the intrinsic quality (roughness and reflectivity) as well as the performance (homogeneity and coherence of the outgoing beam) as a monochromator for synchrotron radiation hard X‐ray micro‐imaging are investigated. The results indicate that the material composition is the dominating factor for the performance. By helping scientists and engineers specify the design parameters of multilayer monochromators, these results can contribute to a better exploitation of the advantages of multilayer monochromators over crystal‐based devices; i.e. larger spectral bandwidth and high photon flux density, which are particularly useful for synchrotron‐based micro‐radiography and ‐tomography.  相似文献   

14.
An X‐ray one‐dimensionally focusing system, a refracting–diffracting lens (RDL), composed of Bragg double‐asymmetric‐reflecting two‐crystal plane parallel plates and a double‐concave cylindrical parabolic lens placed in the gap between the plates is described. It is shown that the focal length of the RDL is equal to the focal distance of the separate lens multiplied by the square of the asymmetry factor. One can obtain RDLs with different focal lengths for certain applications. Using the point‐source function of dynamic diffraction, as well as the Green function in a vacuum with parabolic approximation, an expression for the double‐diffracted beam amplitude for an arbitrary incident wave is presented. Focusing of the plane incident wave and imaging of a point source are studied. The cases of non‐absorptive and absorptive lenses are discussed. The intensity distribution in the focusing plane and on the focusing line, and its dependence on wavelength, deviation from the Bragg angle and magnification is studied. Geometrical optical considerations are also given. RDLs can be applied to focus radiation from both laboratory and synchrotron X‐ray sources, for X‐ray imaging of objects, and for obtaining high‐intensity beams. RDLs can also be applied in X‐ray astronomy.  相似文献   

15.
On the basis of the eikonal approximation, X‐ray Bragg‐case focusing by a perfect crystal with parabolic‐shaped entrance surface is considered theoretically. Expressions for focal distances, intensity gain and distribution around the focus spot as well as for the focus spot sizes are obtained. The condition of point focusing is presented. The experiment can be performed using X‐ray synchrotron radiation sources (particularly free‐electron lasers).  相似文献   

16.
A sputtering chamber for the growth of artificial superlattices of oxide‐based materials is described. The chamber is designed to fit into a standard Huber eight‐circle diffractometer. The chamber serves for investigation with synchrotron radiation of growth characteristics of oxide‐based artificial superlattices in situ. Two Be windows of large area in the vacuum chamber enable measurement of reflections of X‐rays at entrance and exit angles up to ~50°. Large perpendicular momentum transfers are practical with this apparatus. The possibility of investigating X‐ray scattering in situ is demonstrated by observation of the effects of the modulation length and the stacking period on the growth characteristics of BaTiO3/LaNiO3 artificial superlattices.  相似文献   

17.
In this article the effects induced by exposure of sol–gel thin films to hard X‐rays have been studied. Thin films of silica and hybrid organic–inorganic silica have been prepared via dip‐coating and the materials were exposed immediately after preparation to an intense source of light of several keV generated by a synchrotron source. The samples were exposed to increasing doses and the effects of the radiation have been evaluated by Fourier transform infrared spectroscopy, spectroscopic ellipsometry and atomic force microscopy. The X‐ray beam induces a significant densification on the silica films without producing any degradation such as cracks, flaws or delamination at the interface. The densification is accompanied by a decrease in thickness and an increase in refractive index both in the pure silica and in the hybrid films. The effect on the hybrid material is to induce densification through reaction of silanol groups but also removal of the organic groups, which are covalently bonded to silicon via Si—C bonds. At the highest exposure dose the removal of the organic groups is complete and the film becomes pure silica. Hard X‐rays can be used as an efficient and direct writing tool to pattern coating layers of different types of compositions.  相似文献   

18.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

19.
The ESRF synchrotron beamline ID22, dedicated to hard X‐ray microanalysis and consisting of the combination of X‐ray fluorescence, X‐ray absorption spectroscopy, diffraction and 2D/3D X‐ray imaging techniques, is one of the most versatile instruments in hard X‐ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.  相似文献   

20.
Liquid jets are of interest, both for their industrial relevance and for scientific applications (more important, in particular for X‐rays, after the advent of free‐electron lasers that require liquid jets as sample carrier). Instability mechanisms have been described theoretically and by numerical simulation, but confirmed by few experimental techniques. In fact, these are mainly based on cameras, which is limited by the imaging resolution, and on light scattering, which is hindered by absorption, reflection, Mie scattering and multiple scattering due to complex air/liquid interfaces during jet break‐up. In this communication it is demonstrated that synchrotron small‐angle X‐ray scattering (SAXS) can give quantitative information on liquid jet dynamics at the nanoscale, by detecting time‐dependent morphology and break‐up length. Jets ejected from circular tubes of different diameters (100–450 µm) and speeds (0.7–21 m s?1) have been explored to cover the Rayleigh and first wind‐induced regimes. Various solvents (water, ethanol, 2‐propanol) and their mixtures have been examined. The determination of the liquid jet behaviour becomes essential, as it provides background data in subsequent studies of chemical and biological reactions using SAXS or X‐ray diffraction based on synchrotron radiation and free‐electron lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号