首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Room temperature ionic liquids (RTILs) are viscous media consisting entirely of ions. Because of the complex nature of various interactions in these media, the solvent properties of the RTILs are very little understood. Since the fluorescence response of molecules comprising conjugated electron donor and acceptor groups, referred to as dipolar molecules, is one of the most frequently exploited sources of information on complex media, whose properties are largely unknown, it is possible to obtain insight into the structure and dynamics of the RTILs by studying the fluorescence behavior of dipolar solutes in these complex media. The most commonly exploited utility of a fluorescent dipolar system is in the estimation of the polarity of the media from its steady state fluorescence response. While several dipolar systems do provide estimates of the polarity of various RTILs, there can be circumstances when the steady state emission frequency of a dipolar system may not truly reflect the equilibrium solvation energy and, hence, the polarity of the medium. The fluorescence response of a dipolar system can be dependent on the excitation wavelength, an observation not commonly encountered in conventional solvents of similar polarities. On the other hand, the time-resolved fluorescence behavior of a dipolar solute in polar medium is one of the primary sources of information on the time-scale of reorganization of the solvent molecules around the photoexcited species. As the RTILs are sufficiently polar media, the time-dependent fluorescence data of the dipolar systems provide insight into the dynamics and mechanism of solvation in these media, which differ considerably from the conventional solvents. These aspects have been discussed taking into consideration the inherent absorption and fluorescence behavior of the imidazolium ionic liquids.  相似文献   

2.
Steady-state and time-resolved fluorescence behaviors of two dipolar solutes, coumarin 153 and 4-aminophthalimide, have been studied in an alcohol-functionalized room-temperature ionic liquid, 1-(hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. The steady-state fluorescence parameters have been exploited for the estimation of the polarity of this ionic liquid and to obtain information on the hydrogen bonding interaction between the ionic liquid and the probe molecules. The time-resolved measurements have been focused on the dynamics of solvation by studying the dynamic Stokes shift in the ps-ns time scale and solute rotation by measuring the time dependence of the fluorescence anisotropy. The time-resolved anisotropy studies reveal a significant slow down of the rotational motion of one of the probe molecules. The time-dependent fluorescence Stokes shift measurements suggest that the time-resolvable part of the dynamics is biphasic in nature, highly dependent on the probe molecule and the ultrafast component is comparatively less than that in other ionic liquids. The influence of the hydrogen bonding interaction between the probe molecules and the ionic liquids on the solute rotation and the various components of the solvation dynamics is carefully analyzed in an attempt to obtain further insight into the mechanism of solvation in these novel media.  相似文献   

3.
While the imidazolium ionic liquids have been studied for some time, little is known about the pyrrolidinium ionic liquids. In this work, steady-state and picosecond time-resolved fluorescence behavior of three electron donor-acceptor molecules, coumarin-153 (C153), 4-aminophthalimide (AP), and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), has been studied in a pyrrolidinium ionic liquid, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, abbreviated here as [bmpy][Tf2N]. The steady-state fluorescence data of the systems suggest that the microenvironment around these probe molecules, which is measured in terms of the solvent polarity parameter, E(T)(30), is similar to that in 1-decanol and that the polarity of this ionic liquid is comparable to that of the imidazolium ionic liquids. All three systems exhibit wavelength-dependent fluorescence decay behavior, and the time-resolved fluorescence spectra show a progressive shift of the fluorescence maximum toward the longer wavelength with time. This behavior is attributed to solvent-mediated relaxation of the fluorescent state of these systems. The dynamics of solvation, which is studied from the time-dependent shift of the fluorescence spectra, suggests that approximately 45% of the relaxation is too rapid to be measured in the present setup having a time resolution of 25 ps. The remaining observable components of the dynamics consist of a short component of 115-440 ps (with smaller amplitude) and a long component of 610-1395 ps (with higher amplitude). The average solvation time is consistent with the viscosity of this ionic liquid. The dynamics of solvation is dependent on the probe molecule, and nearly 2-fold variation of the solvation time depending on the probe molecule could be observed. No correlation of the solvation time with the probe molecule could, however, be observed.  相似文献   

4.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.  相似文献   

5.
The fluorescence depletion dynamics of Rhodamine 700 (R-700) molecules in room temperature ionic liquids (RTILs) 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF(4)]) and 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([HOemim][BF(4)]) were investigated to determine the local viscosity of the microenvironment surrounding the fluorescent molecules, which is induced by strong hydrogen bonding interaction between cationic and anionic components in RTILs. The solvation and rotation dynamics of R-700 molecules in RTILs show slower time constants relative to that in conventional protic solvents with the same bulk viscosity, indicating that the probe molecule is facing a more viscous microenvironment in RTILs than in conventional solvents because of the strong hydrogen bonding interaction between cationic and anionic components. In addition, this effect is more pronounced in hydroxyl-functionalized ionic liquid than in the regular RTIL due to the presence of a hydroxyl group as a strong hydrogen bonding donor. The hydrogen-bonding-induced local viscosity enhancement effect related to the heterogeneity character of RTILs is confirmed by the nonexponential rotational relaxation of R-700 determined by time-correlated single photon counting (TCSPC). The geometry of hydrogen bonding complexes with different components and sizes are further optimized by density functional theory methods to show the possible hydrogen-bond networks. A model of the hydrogen-bonding network in RTILs is further proposed to interpret the observed specific solvation and local viscosity enhancement effect in RTILs, where most of the fluoroprobes exist as the free nonbonding species in the RTIL solutions and are surrounded by the hydrogen-bonding network formed by the strong hydrogen-bonding between the cationic and anionic components in RTIL. The optimized geometry of hydrogen bonding complexes with different components and sizes by density functional theory methods confirms the local viscosity enhancement effect deduced from fluorescence depletion and TCSPC experiments. The calculated interaction energies reveal the existence of the stronger hydrogen bonding network in RTILs (especially in hydroxyl-functionalized ionic liquid) than that in conventional protic solvent, which leads to the enhancement effect of local microviscosity, and therefore leads to the slow solvation and rotation dynamics of probe molecules observed in RTILs.  相似文献   

6.
The solvation dynamics and local orientational friction for a series of four ionic liquids have been probed using coumarin 153 (C153) as a function of temperature. These ionic liquids are comprised of nonaromatic organic cations paired with a common anion, bis(trifluoromethylsulfonyl)imide (NTf(2)-). The specific liquids are as follows: N-methyl-tri-N-butylammonium NTf(2)- (N(1444)+/NTf(2)-), N-hexyl-tri-N-butylammonium NTf(2)- (N(6444)+/NTf(2)-), N-methyl-N-butylpyrrolidinium NTf(2)- (Pyrr(14)+/NTf(2)-), and N-methyl-N-ethoxyethylpyrrolidinium NTf(2)- (Pyrr(1(2O2))+/NTf(2)-). The observed solvation dynamics and fluorescence depolarization dynamics occur over a broad range of time scales that can only be adequately fit by functions including three or more exponential components. Stretched exponential distributions cannot adequately fit our data. The solvation and reorientational dynamics of the C153 probe are studied over a range of temperatures from 278.2 to 353.2 K. For both the solvation dynamics and the probe reorientational dynamics, the observed temperature dependence is well fit by a Vogel-Tammann-Fulcher law. To correlate the observed microscopic dynamics with macroscopic physical properties, temperature-dependent viscosities are also measured. Differential scanning calorimetry is used to study the thermodynamics of the phase transitions from the liquid to supercooled liquid to glassy states. For the two tetraalkylammonium liquids, the observed melting transitions occur near 300 K, so we are able to study the dynamics in a clearly supercooled regime. Very long time scale orientational relaxation time constants dynamics on the order of 100 ns are observed in the C153 fluorescence anisotropy. These are interpreted to arise from long-lived local structures in the environment surrounding the C153 probe.  相似文献   

7.
Steady-state and time-resolved emission spectroscopy with 25 ps resolution are used to measure equilibrium and dynamic aspects of the solvation of coumarin 153 (C153) in a diverse collection of 21 room-temperature ionic liquids. The ionic liquids studied here include several phosphonium and imidazolium liquids previously reported as well as 12 new ionic liquids that incorporate two homologous series of ammonium and pyrrolidinium cations. Steady-state absorption and emission spectra are used to extract solvation free energies and reorganization energies associated with the S0 <--> S1 transition of C153. These quantities, especially the solvation free energy, vary relatively little in ionic liquids compared to conventional solvents. Some correlation is found between these quantities and the mean separation between ions (or molar volume). Time-resolved anisotropies are used to observe solute rotation. Rotation times measured in ionic liquids correlate with solvent viscosity in much the same way that they do in conventional polar solvents. No special frictional coupling between the C153 and the ionic liquid solvents is indicated by these times. But, in contrast to what is observed in most low-viscosity conventional solvents, rotational correlation functions in ionic liquids are nonexponential. Time-resolved Stokes shift measurements are used to characterize solvation dynamics. The solvation response functions in ionic liquids are also nonexponential and can be reasonably represented by stretched-exponential functions of time. The solvation times observed are correlated with the solvent viscosity, and the much slower solvation in ionic liquids compared to dipolar solvents can be attributed to their much larger viscosities. Solvation times of the majority of ionic liquids studied appear to follow a single correlation with solvent viscosity. Only liquids incorporating the largest phosphonium cation appear to follow a distinctly different correlation.  相似文献   

8.
The solvation dynamics of ionic liquids have been the subject of intense experimental study but remain poorly understood. We present the results of molecular dynamics simulations of the solvation dynamics of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate in response to photoexcitation of the fluorescent dye coumarin-153. We reproduce the time-resolved fluorescence Stokes shift using linear response theory, then use novel statistical techniques to analyze cation and anion contributions to the signal. We find that the solvation dynamics are dominated by collective ionic motion and characterize the time scale for various features of the collective response. Further, we use the Steele analysis [Mol. Phys. 61, 1031 (1987)] to characterize the contributions to the observed Stokes shift made by translational and rovibrational degrees of freedom. Our results indicate that in contrast to molecular liquids, the rovibrational response is trivial and the observed fluorescence response arises almost entirely from ionic translation. Our results resolve previously open questions in the literature about the nature of the rapid dynamics in room-temperature ionic liquids and offer insight into the physical principles governing ionic liquid behavior on longer time scales.  相似文献   

9.
Dynamic Stokes shift measurements of the solvatochromic probe trans-4-dimethylamino-4'-cyanostilbene were used to measure the solvation response of five imidazolium and one pyrrolidinium ionic liquid at 25 degrees C. The Kerr-gated emission and time-correlated single-photon-counting techniques were used to measure spectral dynamics occurring over the time ranges of 100 fs-200 ps and 50 ps-5 ns, respectively, and a combination of data sets from these two techniques enabled observation of the complete solvation response. Observed response functions were found to be biphasic, consisting of a sub-picosecond component of modest (10-20%) amplitude and a dominant slower component relaxing over times of a few picoseconds to several nanoseconds. The faster component could be correlated to inertial characteristics of the constituent ions, and the slower component to solvent viscosity. Dielectric continuum calculations of the sort previously used to predict solvation dynamics in dipolar liquids were shown to work poorly for predicting the response in these ionic liquids.  相似文献   

10.
The solvation dynamics of ionic liquids have been the subject of many experimental and theoretical studies but remain poorly understood. We analyze these dynamics by modeling the time-resolved fluorescence response of coumarin 153 in two room-temperature ionic liquids: 1-butyl-1-methylpyrrolidinium bromide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Our results demonstrate that phenomena such as electrostatic screening operate significantly differently in the two liquids, and the relative importance of translational and rovibrational components of the ionic response depends significantly on the character of the ions involved. However, collective motion dominates the response of both ionic liquids, and the qualitative features of this collective behavior are strikingly similar in both cases.  相似文献   

11.
The dynamics of solvent relaxation in ionic liquid (IL)-water, IL-methanol, and IL-acetonitrile mixtures have been investigated using steady state and picosecond time-resolved fluorescence spectroscopy. We have used Coumarin 153 (C-153) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF(6)]) as fluorescence probe and IL, respectively. The steady-state emission spectra showed that the gradual addition of cosolvents increases the polarity of the mixtures. In neat [hmim][PF(6)] and all IL-cosolvent mixtures, solvation occurs in two well-separated time regimes within the time resolution of our instrument. A substantial portion of the solvation has been missed due to the limited time resolution of our instrument. The gradual addition of cosolvents decreases the viscosity of the medium and consequently solvation time also decreases. The decrease in solvation time is more pronounced on addition of acetonitrile compared to water and methanol. The rotational relaxation time of the probe is also decreasing with gradual addition of the cosolvents. The decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule.  相似文献   

12.
The photochemistry and relaxation dynamics of four room-temperature ionic liquids (RTILs) after ultraviolet (UV) photolysis were investigated by femtosecond pump-probe absorption spectroscopy. A pulse duration-limited rise of the induced absorption in halide-containing RTILs at various probe wavelengths was attributed to the generation of solvated electrons. With continuous irradiation (static conditions), di- and trihalide ion formation became apparent especially below 1000 nm. The formation of trihalide ions was further confirmed by steady-state UV absorption spectroscopy. All RTILs showed a rich photochemistry after UV photolysis leading to the build-up of various long-lived intermediate products as evidenced from the observation that ionic liquids turn yellow upon continuous irradiation. On the other hand, exposing RTILs to the excitation pulse for a short time (rapid-scan method) significantly suppressed the formation of halides. The results suggest that the development of flow-cell systems for highly viscous ionic liquids is urgently needed to quantitatively investigate their ultrafast dynamics.  相似文献   

13.
In this paper we have reported the solvent and rotational relaxation of 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6]) confined in tween 20/([bmim][PF6]/water microemulsion using coumarin 153 (C-153) as probe. The most interesting feature of our experiment was that we observed an increase in solvent relaxation time with increase in R (R = tween 20-to-[bmim][PF6] molar ratio). This is due to the fact that with increase in [bmim][PF6] content of the microemulsions, the microviscosity of the pool of the microemulsions increases, and motion of ions of [bmim][PF6] is hindered in the pool of microemulsions. Since motion of ions is responsible for solvation in room-temperature ionic liquids (RTILs), solvent-relaxation time increases with increase in R.  相似文献   

14.
The molecular dynamics (MD) simulation study of solvation structure and free energetics in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate using a probe solute in the preceding article [Y. Shim, M. Y. Choi and H. J. Kim, J. Chem. Phys. 122, 044510 (2005)] is extended to investigate dynamic properties of these liquids. Solvent fluctuation dynamics near equilibrium are studied via MD and associated time-dependent friction is analyzed via the generalized Langevin equation. Nonequilibrium solvent relaxation following an instantaneous change in the solute charge distribution and accompanying solvent structure reorganization are also investigated. Both equilibrium and nonequilibrium solvation dynamics are characterized by at least two vastly different time scales--a subpicosecond inertial regime followed by a slow diffusive regime. Solvent regions contributing to the subpicosecond nonequilibrium relaxation are found to vary significantly with initial solvation configurations, especially near the solute. If the solvent density near the solute is sufficiently high at the outset of the relaxation, subpicosecond dynamics are mainly governed by the motions of a few ions close to the solute. By contrast, in the case of a low local density, solvent ions located not only close to but also relatively far from the solute participate in the subpicosecond relaxation. Despite this difference, linear response holds reasonably well in both ionic liquids.  相似文献   

15.
We have prepared novel room temperature ionic liquids (RTILs) with trimethylsilylmethyl (TMSiM)-substituted imidazolium cations and compared the properties of these liquids with those for which the TMSiM group is replaced by the analogous neopentyl group. The ionic liquids are prepared with both tetrafluoroborate (BF(4)(-)) and bis(trifluoromethylsulfonyl)imide (NTf(2)(-)) anions paired with the imidazolium cations. At 22 degrees C, the TMSiM-substituted imidazolium ILs have shear viscosities that are reduced by a factor of 1.6 and 7.4 relative to the alkylimidazolium ILs for the NTf(2)(-) and BF(4)(-) anions, respectively. To understand the effect of silicon substitution on the viscosity, the charge densities have been calculated by using density functional theory electronic structure calculations. The ultrafast intermolecular, vibrational, and orientational dynamics of these RTILs have been measured by using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The intermolecular dynamical spectrum provides an estimate of the strength of interactions between the ions in the RTILs, and provides a qualitative explanation for the observed reduction in viscosity for the silicon-substituted RTILs.  相似文献   

16.
The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations. Long trajectories of a large system have been generated and quantities such as the self-diffusion coefficient of ions, shear viscosity, and ionic conductivity have been calculated. Interestingly, the diffusion of the heavier cation is found to be faster than the anion, in agreement with experiment. The interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates. Analysis of the latter calculations points to correlated ion motions in this melt. The solvation time correlation function for dipolar and ionic probes studied using equilibrium simulations exhibits three time components, which include an ultrafast (subpicosecond) part as well as one with a time constant of around 150 ps. The ultrafast solvent relaxation is ascribed to the rattling of anions in their cage, while the slow component could be related to the reorientation of the cations as well as to ion diffusion.  相似文献   

17.
Steady‐state and time‐resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1‐ethyl‐3‐methylimidazolium alkylsulfate ([C2mim][CnOSO3]) ionic liquids differing only in the length of the linear alkyl chain (n=4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady‐state absorption and emission maxima of C153 on going from the C4OSO3 to the C8OSO3 system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time‐zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes–Einstein–Debye (SED), Gierer–Wirtz (GW), and Dote–Kivelson–Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.  相似文献   

18.
We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming dipolar liquid butyronitrile near its glass transition temperature T(g)=95 K. The Stokes shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical linewidth changes along the solvation coordinate in a nonmonotonic fashion. These features are characteristic of solvation in viscous solvents and clearly indicate heterogeneous dynamics, i.e., spatially distinct solvent response times. Using the dielectric relaxation data of viscous butyronitrile as input, a microscopic model of dipolar solvation captures the relaxation time, the relaxation dispersion, and the amplitude of the dynamical Stokes shift remarkably well.  相似文献   

19.
The dynamics of solvent and rotational relaxation of Coumarin 153 (C-153) in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and in the ionic liquid confined in Brij-35 micellar aggregates have been investigated using steady-state and time-resolved fluorescence spectroscopy. We observed slower dynamics in the presence of micellar aggregates as compared to the pure IL. However, the slowing down in the solvation time on going from neat IL to IL-confined micelles is much smaller compared to that on going from water to water-confined micellar aggregates. The increase in solvation and rotational time in micelles is attributed to the increase in viscosity of the medium. The slow component is assumed to be dependent on the viscosity of the solution and involves large-scale rearrangement of the anions and cations while fast component is assumed to originate from the initial response of the anions during excitation. The slow component increases due to the increase in the viscosity of the medium and increase in fast component is probably due to the hydrogen bonding between the anions and polar headgroup of the surfactant. The dynamics of solvent relaxation was affected to a small extent due to the micelle formation.  相似文献   

20.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号