首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The coupled flow problem of an incompressible axisymmetrical quasisteady motion of a porous sphere translating in a viscous fluid along the axis of a circular cylindrical pore is discussed using a combined analytical–numerical technique. At the fluid–porous interface, the stress jump boundary condition for the tangential stress along with continuity of normal stress and velocity components are employed. The flow through the porous particle is governed by the Brinkman model and the flow in the outside porous region is governed by Stokes equations. A general solution for the field equations in the clear region is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are satisfied first at the cylindrical pore wall by the Fourier transforms and then on the surface of the porous particle by a collocation method. The collocation solutions for the normalized hydrodynamic drag force exerted by the clear fluid on the porous particle is calculated with good convergence for various values of the ratio of radii of the porous sphere and pore, the stress jump coefficient, and a coefficient that is proportional to the permeability. The shape effect of the cylindrical pore on the axial translation of the porous sphere is compared with that of the particle in a spherical cavity; it found that the porous particle in a circular cylindrical pore in general attains a lower hydrodynamic drag than in a spherical envelope.  相似文献   

2.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

3.
A semianalytical study of the creeping flow caused by a spherical fluid or solid particle with a slip surface translating in a viscous fluid within a spherical cavity along the line connecting their centers is presented in the quasisteady limit of small Reynolds number. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the fundamental solutions in the two spherical coordinate systems based on both the particle and cavity. The boundary conditions on the particle surface and cavity wall are satisfied by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the ratio of particle-to-cavity radii, the relative distance between the centers of the particle and cavity, the relative viscosity or slip coefficient of the particle, and the slip coefficient of the cavity wall. In the limits of the motions of a spherical particle in a concentric cavity and near a cavity wall with a small curvature, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force exerted on the particle for all cases is a monotonic increasing function of the ratio of particle-to-cavity radii, and becomes infinite in the touching limit. For a specified ratio of particle-to-cavity radii, the drag force is minimal when the particle is situated at the cavity center and increases monotonically with its relative distance from the cavity center to infinity in the limit as it is located extremely away from the cavity center. The drag force acting on the particle, in general, increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given configuration, but surprisingly, there are exceptions when the ratio of particle-to-cavity radii is large.  相似文献   

4.
The problem of the quasisteady motion of a spherical fluid or solid particle with a slip-flow surface in a viscous fluid perpendicular to two parallel plane walls at an arbitrary position between them is investigated theoretically in the limit of small Reynolds number. To solve the axisymmetric Stokes equation for the fluid velocity field, a general solution is constructed from the superposition of the fundamental solutions in both circular cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the plane walls by the Hankel transform and then on the particle surface by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle and of the relative separation distances between the particle and the confining walls. For the motions of a spherical particle normal to a single plane wall and of a no-slip sphere perpendicular to two plane walls, our drag results are in good agreement with the available solutions in the literature for all relative particle-to-wall spacings. The boundary-corrected drag force acting on the particle in general increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given geometry, but there are exceptions. For a specified wall-to-wall spacing, the drag force is minimal when the particle is situated midway between the two plane walls and increases monotonically when it approaches either of the walls. The boundary effect on the particle motion normal to two plane walls is found to be significant and much stronger than that parallel to them.  相似文献   

5.
A combined analytical and numerical study of the Stokes flow caused by a rigid spheroidal particle translating along its axis of revolution in a viscous fluid is presented. The fluid is allowed to slip at the surface of the particle. The general solution for the stream function in prolate and oblate spheroidal coordinates can be expressed in an infinite-series form of semi-separation of variables. The slip boundary condition incorporating the shear stress at the particle surface is applied to this general solution to determine its unknown coefficients of the leading orders. The solution of these coefficients can be either numerical results obtained from a boundary-collocation method or explicit formulas derived analytically. The drag force exerted on the spheroidal particle by the fluid is evaluated with good convergence behavior for various values of the slip parameter and aspect ratio of the particle. The agreement between our hydrodynamic drag results and the relevant numerical solutions obtained previously using a singularity method is excellent. Although the drag force acting on the translating spheroid normalized by that on a corresponding sphere with equal equatorial radius increases monotonically with an increase in the axial-to-radial aspect ratio for a no-slip spheroid, it decreases monotonically as this aspect ratio increases for a perfect-slip spheroid. The normalized drag force exerted on a spheroid with a given surface slip coefficient in between the no-slip and perfect-slip limits is not a monotonic function of its aspect ratio. For a spheroid with a fixed aspect ratio, its drag force is a monotonically decreasing function of the slip coefficient of the particle.  相似文献   

6.
The fundamental solution for the axi-symmetrictranslational motion of a microstretch fluid due to a concentrated point body force is obtained.A general formula for thedrag force exerted by the fluid on an axi-symmetric rigid particle translating in it is then deduced.As an application to theobtained drag formula,this paper has discussed the problemof creeping translational motion of a rigid sphere in a microstretch fluid.The slip boundary condition on the surfaceof the spherical particle is applied.The drag force and theother physical quantities are obtained and represented graphically for various values of the micropolarity and slip parameters.  相似文献   

7.
Singular perturbation techniques are used to investigate the slow, asymmetric flow around a sphere positioned eccentrically within a long, circular, cylindrical tube filled with viscous fluid. The results apply to situations in which the sphere occupies virtually the entire cross section of the cylinder, so that the clearance between the particle and tube wall is everywhere small compared with both the sphere and tube radii. The technique is an improvement over conventional “lubrication-theory” analyses.Asymptotic expansions, valid for small dimensionless clearances, are obtained for the hydrodynamic force, torque and pressure drop for flow past a stationary sphere, as well as for the case of a sphere translating or rotating in an otherwise quiescent fluid. These expansions are employed to predict the macroscopic behavior of both a neutrally-buoyant sphere suspended in a Poiseuille flow, and a sedimenting sphere in a vertical tube.The results find application in capillary blood flow, pipeline transport of encapsulated materials, and falling-ball viscometers.  相似文献   

8.
An expression for the acoustic radiation force function on a solid elastic spherical particle placed in an infinite rigid cylindrical cavity filled with an ideal fluid is deduced when the incident wave is a plane progressive wave propagated along the cylindrical axis. The acoustic radiation force of the spherical particle with different materials was computed to validate the theory. The simulation results demonstrate that the acoustic radiation force changes demonstrably because of the influence of the reflective acoustic wave from the cylindrical cavity. The sharp resonance peaks, which result from the resonance of the fluid-filled cylindrical cavity, appear at the same positions in the acoustic radiation force curve for the spherical particle with different radii and materials. Relative radius, which is the ratio of the sphere radius and the cylindrical cavity radius, has more influence on acoustic radiation force. Moreover, the negative radiation forces, which are opposite to the progressive directions of the plane wave, are observed at certain frequencies.  相似文献   

9.
In this paper, the steady rotational motion of a slip sphere in a semi-infinite micropolar fluid is investigated. The sphere is assumed to rotate about a diameter perpendicular to an impermeable plane wall. The slip and spin boundary conditions are imposed on the spherical particle surface while on the plane wall surface the classical no-slip and no-spin conditions are utilized. A semi-analytical technique based on the principle of superposition together with a numerical method, called the collocation method, is employed to obtain the hydrodynamic torque acting on the spherical particle. Numerical results for the torque are obtained and illustrated graphically.  相似文献   

10.
吴以坚  陆振华 《应用力学学报》2020,(2):607-611,I0010
为了更好地运用落球法测量研究流体的黏滞系数,研究小球在黏性流体中下落的受力情况,本文对小球在充满黏性流体的圆柱管道的下落过程进行分析。利用COMSOL4.4仿真模拟,建立了合理的仿真模型,并分析了小球受到的黏滞阻力与小球的大小、下落位置的关系。结果表明:选择速度项二阶近似、压强项一阶近似的离散化方法,可以得到和理论值非常相符的仿真结果;当下落过程中小球球心始终在圆柱轴线上时,小球受到的黏滞阻力相对于Stokes力的修正系数,是小球半径与圆柱管道半径的比例函数,本文得到了更大范围的符合理论解的修正系数;当下落过程中小球的球心偏离圆柱轴线时,对于同样大小的小球,黏滞阻力、压强力、黏性力均随着球心到轴线的距离先减小后增大,且具有不同的极小值点。  相似文献   

11.
E. I. Saad 《Meccanica》2012,47(8):2055-2068
The Stokes axisymmetrical flow of an incompressible micropolar fluid past a viscous fluid sphere and the flow of a viscous fluid past a micropolar fluid sphere are investigated. The appropriate boundary conditions are taken on the surface of the sphere, while the proper conditions applied on the fictitious boundary of the fluid envelope vary depending on the kind of cell-model. These problems are solved separately in an analytical fashion, and the velocity profile and the pressure distribution inside and outside of the droplet are shown in several graphs for different values of the parameters. Numerical results for the normalized hydrodynamic drag force acting, in each case, on the spherical droplet-in-cell are obtained for various values of the parameters representing volume fraction, the classical relative viscosity, the micropolarity and spin parameters are presented both in tabular and graphical forms. Results of the drag force are compared with the previous particular cases.  相似文献   

12.
This paper presents an analytical study of creeping motion of a permeable sphere in a spherical container filled with a micro-polar fluid. The drag experienced by the permeable sphere when it passes through the center of the spherical container is studied.Stream function solutions for the flow fields are obtained in terms of modified Bessel functions and Gegenbauer functions. The pressure fields, the micro-rotation components,the drag experienced by a permeable sphere, the wall correction factor, and the flow rate through the permeable surface are obtained for the frictionless impermeable spherical container and the zero shear stress at the impermeable spherical container. Variations of the drag force and the wall correction factor with respect to different fluid parameters are studied. It is observed that the drag force, the wall correction factor, and the flow rate are greater for the frictionless impermeable spherical container than the zero shear stress at the impermeable spherical container. Several cases of interest are deduced from the present analysis.  相似文献   

13.
For any study of a suspension entering a pore, the knowledge of the force and moment exerted on a solute particle in an arbitrary position outside the pore is essential. This paper for the first time presents approximate analytical expressions (in closed form) of all the twelve force and moment coefficients for a sphere outsied a circular orifice, on the basis of a number of discrete data computed by Yan et al. (1987). These coefficients are then applied to calculate the trajectory and angular velocity of a spherical particle approaching the pore at zero Reynolds number. The trajectory is in excellent agreement with the available experimental results. An analysis of the relative importance of the coefficients shows that the rotation effect cannot be neglected near the pore opening or near the wall, and that the lateral force effect must be taken into account in the neighborhood of the edge of the pore opening. It is due to neglecting these factors that previous theoretical results deviate from the experimental ones near the pore opening. The effects of the ratio of the particle to pore radii as well as the influences of the gravity/buoyance on the particle trajectory, velocity distribution and rotation are discussed in detail. It is pointed out that in the experiments of neutrally-buoyant suspensions, the restriction on the density of the particle is most demanding for a large particle size. The expressions of forces and moments presented herein are complete, relatively accurate and convenient, thus providing a good prerequisite for further studies of any problems involving the entrance of particles to a pore.Project supported by the National Natural Science Foundation of China.  相似文献   

14.
A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.  相似文献   

15.
Pramod Kumar Yadav 《Meccanica》2013,48(7):1607-1622
This paper concerns the Slow Motion of a Porous Cylindrical Shell in a concentric cylindrical cavity using particle-in-cell method. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid in their stream function formulations are used. The hydrodynamic drag force acting on each porous cylindrical particle in a cell and permeability of membrane built up by cylindrical particles with a porous shell are evaluated. Four known boundary conditions on the hypothetical surface are considered and compared: Happel’s, Kuwabara’s, Kvashnin’s and Cunningham’s (Mehta-Morse’s condition). Some previous results for hydrodynamic drag force and dimensionless hydrodynamic permeability have been verified. Variation of the drag coefficient and dimensionless hydrodynamic permeability with permeability parameter σ, particle volume fraction γ has been studied and some new results are reported. The flow patterns through the regions have been analyzed by stream lines. Effect of particle volume fraction γ and permeability parameter σ on flow pattern is also discussed. In our opinion, these results will have significant contributions in studying, Stokes flow through cylindrical swarms.  相似文献   

16.
Particle bridge formation during the flow of a liquid with particles through a porous material is a fouling mechanism that can block the pores and, hence, decrease the permeability of the material. Ultrasonic irradiation of the material is a cleaning method that can restore the permeability. We make a numerical study of this cleaning method using the lattice-Boltzmann method. We start from a pore blocked by two spherical particles attached to the pore wall by colloidal adhesion forces, thus forming a particle bridge. Next we calculate the hydrodynamic force exerted by a high-frequency acoustic wave on the two particles. By comparing the hydrodynamic force and the adhesion force we investigate, whether the particle bridge will be removed by the ultrasonic irradiation. A sensitivity study is carried out to investigate the influence of some relevant parameters, such as the acoustic wave amplitude, the acoustic frequency, the fluid flow velocity and the ratio of particle diameter and pore diameter. An upscaling procedure is applied to translate the microscopic results for the removal of the particles at the pore level to the permeability improvement of the material at the macroscopic level. A comparison is made between numerical results and experimental data. The agreement is reasonable.  相似文献   

17.
In order to investigate the hydrodynamic interaction between an interface and a spherical particle and its dependence on the type of interface, it is essential to compute the drag and torque exerted on the sphere in the vicinity of the interface. In this paper, the problem of all slow elementary motions (relative translation and rotation) and stationary movement of a spherical particle next to a solid, viscous or free interface is considered. For low capillary numbers and different values of surface dilatational and shear viscosities in a curvilinear co-ordinate system of revolution with bicylindrical co-ordinates in meridian planes, the problem reduces from three to two dimensions. The model equations and boundary conditions, which contain second-order derivatives of the velocities, transform to an equivalent well-defined system of second-order partial differential equations which is solved numerically for medium and small values of the dimensionless distance to the interface. Very good agreement with the asymptotic equation for a translating sphere close to a solid interface could be achieved. The numerical results reveal in all cases the strong influence of the surface viscosity on the motion of the solid sphere. For small distances from the interface, the drag and torque coefficients change significantly depending on the surface viscosity.  相似文献   

18.
The body-force-driven motion of a homogeneous distribution of spherically symmetric porous shells in an incompressible Newtonian fluid and the fluid flow through a bed of these shell particles are investigated analytically. The effect of the hydrodynamic interaction among the porous shell particles is taken into account by employing a cell-model representation. In the limit of small Reynolds number, the Stokes and Brinkman equations are solved for the flow field around a single particle in a unit cell, and the drag force acting on the particle by the fluid is obtained in closed forms. For a suspension of porous spherical shells, the mobility of the particles decreases or the hydrodynamic interaction among the particles increases monotonically with a decrease in the permeability of the porous shells. The effect of particle interactions on the creeping motion of porous spherical shells relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solution describing the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres. The particle-interaction behavior for a suspension of porous spherical shells with a relatively low permeability may be approximated by that of permeable spheres when the porous shells are sufficiently thick.  相似文献   

19.
We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid–particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle−particle, particle−wall, and particle−drill pipe are taken into account with the Hertz–Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi-sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid–particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid–solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results.  相似文献   

20.
The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been investigated. The Brinkman's model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container were used to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sphere and inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall correction factor is determined. To cite this article: D. Srinivasacharya, C. R. Mecanique 333 (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号