首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ArF laser pulse transmission through commercial high purity CaF2 is determined by measuring the energy of each pulse before and behind the sample up to an incident fluence H of 10 mJ/cm2. The steady state transmission of ArF laser pulses decreases with increasing fluence. The related absorption coefficients α st(H) are proportional to H and rationalized by effective 1- and 2-photon absorption coefficients 2.4×10?4 cm?1α eff≤16.8×10?4 cm?1 and 1.7×10?9 cm?W?1β eff≤9.3×10?9 cm?W?1, respectively. The α eff and β eff values increase with the Na content of the CaF2 samples as identified by the fluorescence of Na-related M Na centers at 740 nm. This relation is simulated by a rate equation model describing the ArF laser induced M Na generation in the dark periods between the laser pulses and their annealing during laser irradiation. M Na generation starts with intrinsic 2-photon absorption in CaF2, yielding self-trapped excitons (STE). These pairs of F and H centers move upon thermal activation and the F centers combine with F Na to form M Na centers. M Na annealing occurs by its photo dissociation into a pair of F and F Na centers.  相似文献   

2.
Following the fluid model for the nonlinear response of electrons, a theoretical investigation has been made on the filamentation and modulational instabilities of high power laser radiation in magnetoactive piezoelectric semiconductors. The ponderomotive force on electrons is responsible for the parametric amplification of the low frequency electrostatic perturbation which may cause the filamentation or modulational instability of the incident laser beam depending upon the direction of propagation of the perturbation. For typical parameters in n-InSb: ?L = 16 at 77°K, ωp = 1013radsec?1, v0 = 1011radsec?1,K2 = 10?3, ωc = 1012radsec?1,k = 5 × 102cm?1, and when the power density of the 10.6 microm CO2 laser is 2.37 MW cm?2 (|?0xC| = 10?3), the growth rate of the filamentation instability is ~ 104 rad sec?1 and the growth rate of the modulational instability is ~ 103 rad sec?1. It is observed that the external static magnetic field decreases the growth rate of the filamentation instability, whereas it has insignificant effect on the modulational instability of laser beams in piezoelectric semiconductors.  相似文献   

3.
Abstract

Singlet energy transfer between seven derivatives of perylene diimides and cobalt ions are studied. Energy transfer quenching by cobalt ions is observed for all of the perylene diimides. The rate of bimolecular quenching is found to be about, kq ? 1010 M?1s?1, only the N-naphthyl substitution lowered the rates to the range of, kq ? 109 M?1s?1. The critical transfer distances, Ro (5.8–10.4 A°), calculated from donor emission and acceptor absorption spectra, are attributed to a Forster resonance energy transfer process.  相似文献   

4.
A D Mulla  N N Math  M I Savadatti 《Pramana》1991,36(6):639-645
Triplet-singlet energy transfer in laser dyes have been studied in EPA at 77K using N2 laser as an excitation source. Phosphorescence of the donor (D) and the delayed fluorescence of the acceptor (A) and their lifetimes have been measured for coumarin 102 (D)-rhodamine B(A) and 9(10H)-acridone (D)-rhodamine 6G(A) dye systems as a function of acceptor concentration. These data yield energy transfer rate constants of ∼103 dm3 mol−1 s−1 for the donor acceptor combinations, consistent with the Forster mechanism. The phosphorescence quantum efficiency and other spectral parameters are also reported.  相似文献   

5.
Optical spectra and electrical conductivity of silicon-doped epitaxial gallium nitride layers with uncompensated donor concentrations N D N A up to 4.8 × 1019 cm?3 at T ≈ 5 K have been studied. As follows from the current-voltage characteristics, at a doping level of ~3 × 1018 cm?3 an impurity band is formed and an increase of donor concentration by one more order of magnitude leads to the merging of the impurity band with the conduction band. The transformation of exciton reflection spectra suggests that the formation of the impurity band triggers effective exciton screening at low temperatures. In a sample with N D N A = 3.4 × 1018 cm?3, luminescence spectra are still produced by radiation of free and bound excitons. In a sample with N D N A = 4.8 × 1019 cm?3, Coulomb interaction is already completely suppressed, with the luminescence spectrum consisting of bands deriving from impurity-band-valence band and conduction-band-valence band radiative transitions.  相似文献   

6.
Absolute measurement for He-α resonance (1s2 1S0?1s2p1 P 1, at 40.2 Å) line emission from a laser-produced carbon plasma has been studied as a function of laser intensity. The optimum laser intensity is found to be ≈1.3×1012 W/cm2 for the maximum emission of 3.2 × 1013 photons sr?1 pulse?1. Since this line lies in the water window spectral region, it has potential application in x-ray microscopic imaging of biological sample in wet condition. Theoretical calculation using corona model for the emission of this line is also carried out with appropriate ionization and radiative recombination rate coefficients  相似文献   

7.
The radiative lifetime of the v′ = 0 level of the c1Φ state of TiO has been measured from observations on fluorescent decay of a single rotational level, following excitation by laser radiation. The value is τ0 = 17.5 ± 1.0 nsec. From this is derived a transition probability of 5.71 × 107 sec?1 and an emission f value of 0.270. Transition probabilities for the other bands in the β system have been calculated.  相似文献   

8.
Intense NH electronic emission spectra have been obtained from the low-density plume of an argon arc-jet ammonia introduced around the periphery. These spectra have been compared with spectra calculated by use of an IBM 360/50 computer from molecular constants, and the results of the computer comparison leading to a list of preferred molecular constants are included. Intensity measurements on emission spectra have yielded several previously unknown electronic-vibrational transition probabilities for different NH band systems. The electronic vibrational transition probabilities available from the literature are also included with an evaluation of the overlap of other band systems which apparently neglected in their original determination. The newly measured electronic-vibrational transition probabilities are as follows: A3ΠX3Σ-A01 = 1.30 × 104sec-1 A10 = 0.5 × 104 sec-1 A12 = 3.04 × 104 sec-1C1Πa1δA01 = 10.4 × 104sec-1C1Πb1δ+A00 = 7.45 × 104sec-1  相似文献   

9.
Diode laser measurements of the ν10 + ν11 (ltot = ±2) perpendicular band of cyclopropane have led to the assignments of roughly 600 lines in the 1880–1920-cm?1 region. Most of the spectra were recorded and stored in digital form using a rapid-scan mode of operating the laser. These spectra were calibrated, with the aid of a computer, by reference to the R lines of the ν1 + ν2 band of N2O. The ground state constants we obtained are (in cm?1) B = 0.670240 ± 2.4 × 10?5, DJ = (1.090 ± 0.054) × 10?6, DJK = (?1.29 ± 0.19) × 10?6, DK = (0.2 ± 1.1) × 10?6. The excited state levels are perturbed at large J values, presumably by Coriolis couplings between the active E′(ltot = ±2) and the inactive A′(ltot = 0) states. Effective values for the excited state constants were obtained by considering only the J < 15 levels. The A1-A2 splittings in the K′ = 1 excited states were observed to vary as qeffJ(J + 1), with qeff = (2.17 ± 0.17) × 10?4 cm?1.  相似文献   

10.
Vibration-rotation transitions of the PO radical in the X2Πr state have been observed by a tunable infrared diode laser spectrometer. The analysis of the observed spectra gave the molecular constants in the v = 1 state and the band origin to be B = 0.7250107(36), D = 1.0253(60) × 10?4, AJ = 0.997(24) × 10?4, p = 0.006323(33), A1 - A0 = 0.16354(78), and ν0 = 1220.24901(43), all in cm?1 units with three standard errors in parentheses, where the v = 0 parameters were fixed to the values previously reported. The equilibrium internuclear distance was determined to be re = 1.476370(15) A?.  相似文献   

11.
Spectroscopic and kinetics properties of Lu2SiO5:Dy3+ (LSO:Dy) single crystal with 1 and 5 at.% of activator were investigated. The polarised absorption and unpolarised emission spectra were measured at 10–300 K. Parameters characterising radiative relaxations of LSO:Dy were estimated by the Judd–Ofelt model. The crystal-field energy structure was derived from low-temperature optical spectra exhibiting the presence of two non-equivalent Dy3+ sites. It was found that dysprosium ions in site 1 and in site 2 do not form isolated subsystems; these subsystems are coupled by an effective spectral energy migration process. The LSO:Dy crystal exhibits a strong luminescence in the visible. Strong ion–ion interactions were observed for LSO:Dy (5 at.%); luminescence decays are non-exponential and the macro-parameter of donor–acceptor interaction C da amounts to 5.3 (10?52 m6?s?1) and 7.8 (10?52 m6?s?1) at 10 and 300 K, respectively. Laser potential related to the 4F9/26H13/2 yellow luminescence in Dy:LSO was assessed based on evaluation of the emission cross section values. It was concluded that the crystal is a promising material for visible laser operation.  相似文献   

12.
The aim of this study is the measurement of superficial migration coefficient of tritium physisorbed on monocrystalline nickel without chemisorbed sublayer. The chosen crystalline orientation was (111) because it offers the greatest concentration of adsorption sites per square centimeter. A clean surface sample is obtained by mechanical polishing, chemical etching and finally ionic bombardment by high purity argon gas. The pressure in the experimental vessel is maintained below 10?9 torr, by liquid helium cryopumping after zeolite sorption pumping.A little spot of adsorbed tritium is produced by introduction of a finite amount of tritium gas on the clean surface of the nickel sample through a stainless steel tube. Temperatures of nickel and of the gas introduction tube are respectively regulated at 5 K and 35 K. Tritium is used as a radioactive marker and its 10 keV β-radiation is measured by a channeltron type detector which permits the localization of the deposit without acting on the surface. We observed that tritium sorbed at 5 K is quite immobile (at the time scale of our experiment). After heating up to a fixed temperature T chosen between 10 K and 20 K, the deposite profile variation in function of time is observed to determine the superficial diffusion coefficient D. For the values of T from 13 K to 20 K, D varies from 10×10?6 to 150×10?6 cm2 sec?1. A diffusion activation energy of 200 cal mole?1 is deduced from the exponential increase of the curve. A vibrational frequency can be evaluated to 3×1012 sec?1. The rate of desorption permits the evaluation of sorption energy at about 1800 cal mole?1 in good agreement with usual results concerning physorption of H2 on metals.  相似文献   

13.
Ca0.89Y0.11F2.11:Er3+ (CYF:Er) crystals with an erbium content of 1–15 at % have been grown. The optical spectra and luminescence kinetics of CYF:Er crystals have been investigated at low (~5 K) and room temperatures. Based on an analysis of the absorption spectra at low temperature, the structure of Stark splitting of erbium levels in CYF:Er crystals is determined. Room-temperature absorption spectra are used to calculate the spectra of absorption cross sections and oscillator strengths of transitions from the erbium ground state to excited multiplets. It is shown that the absorption spectrum of CYF:Er crystals contains broad bands in the ranges of 790–815 and 965–980 nm, which correspond to the range of emission of laser diodes. For the band peaking near 967 nm, the peak absorption cross section is σ abs max = 2.7 × 10?21 cm2. The intensity parameters are determined by the Judd-Ofelt method to be Ω2 = 1.39 × 10?20, Ω4 = 1.34 × 10?20, and Ω6 = 2.24 × 10?20 cm2. The radiative transition probabilities, radiative lifetimes, and branching ratios are calculated with these values. The luminescence decay kinetics from excited erbium levels upon selective excitation is investigated and the experimental lifetimes of the 4F 9/2, 4 S 3/2, and 4 G 11/2 radiative erbium levels are determined. The dependences of multiphonon relaxation rates on the energy gap in CYF:Er crystals are obtained. The rates of nonradiative multiphonon relaxation from radiative erbium levels are determined.  相似文献   

14.
Na0.4Y0.6F2.2:Tm3+ crystals with a thulium content from 1 to 100 at % have been grown by the Stockbarger-Bridgman method. The optical spectra of Na0.4Y0.6F2.2:Tm3+ crystals were investigated in detail at room and low (10 K) temperatures, and the luminescence kinetics was analyzed using different excitation methods. The structure of the Stark splitting of thulium levels as “quasi-centers,” characterized by inhomogeneous broadening of the Stark components, is determined from analysis of the absorption spectrum at 10 K. The oscillator strengths of the transitions from the ground state to excited multiplets are determined from the absorption cross-section spectra at 300 K for ten transitions in the range 5000–38 500 cm?1 and seven transitions in the range 5000–28 500 cm?1. The transition intensity parameters Ω t , obtained by the Judd-Ofelt method from the spectra due to the transitions to ten and seven excited levels, were found to be, respectively, (i) Ω2 = 1.89 × 10?20, Ω4 = 2.16 × 10?20, and Ω6 = 1.40 × 10?20 cm2 and (ii) Ω2 = 2.04 × 10?20, Ω4 = 2.01 × 10?20, and Ω6 = 1.44 × 10?20 cm2. These values of the intensity parameters were used to calculate the radiative transition probabilities and branching ratios and to estimate the multiphonon nonradiative transition probabilities for NYF:Tm. The luminescence decay kinetics from thulium radiative levels upon their selective excitation by nanosecond laser pulses has been studied and the lifetimes of thulium radiative levels in NYF crystals have been found.  相似文献   

15.
We present Doppler resolution limited spectra of the P(J) and R(J) multiplets for J ≦ 10 of the 10-μm CO stretch band of 12CD316OH using a tunable diode laser. Relative frequencies within the multiplets accurate to ±0.0002–0.0005 cm?1 are obtained, but no absolute frequencies are given. We are able to assign most of the hindered rotation and K substructure in these multiplets. The assignments are based on analyses of Stark-difference spectra combined with the ground-state microwave data and the intensity variations which are expected theoretically. The ground and excited state A, K = 1 asymmetry splitting parameters are measured to be δ1″ = (8.5450 ± 0.0080) × 10?3cm?1 and δ1′ = (9.7706 ± 0.0080) × 10?3cm?1, respectively. The ground-state value agrees well with the microwave results. A rapid-scan system for recording data and a computer-aided technique for calibrating and plotting the spectra are described.  相似文献   

16.
Impurity states and nonlinear transport phenomena in n-type indium antimonide under strong magnetic fields have been extensively studied at liquid helium temperatures through H2O laser cyclotron resonance combined with d.c. measurements. A new type cyclotron resonance with modulation by pulsed electric field, or PEM-CR, has been utilized throughout. Origin of several weak transitions so far indefinite has been identified. Existence of the donor binding state in a magnetic field as low as 2·85 kOe for the excess donor concentration ND ? NA = 2 × 1013 cm?3 is experimentally confirmed. Joint determination of resistivity and carrier distribution in the energy space has yielded a fair success in separating the mechanisms for the nonlinear transport behavior.  相似文献   

17.
Studies of the time dependencies of the number density of N 2 + , Ne+ and Ne 2 + ions have been made during the decay period of plasmas produced in neon containing various concentrations of nitrogen molecules. Reaction rate constants were obtained for N 2 + +N2+Ne→N 4 + +Ne((1.2±0.2)×10?29 cm6 sec?1) and Ne++N2→N 2 + + Ne ((2.9±0.3) × 10?12 cm3 sec?1). The ambipolar diffusion coefficient of N 2 + in neon was found to beD a p o =350±20 cm2 sec?1 Torr.  相似文献   

18.
The interactions between a molecular beam of SiO(g) and a clean and an oxidized tungsten surface were examined in the surface temperature range 600 to 1700 K by mass spectrometrically determined sticking probabilities, by flash desorption mass spectrometry (FDMS) and by Auger electron spectroscopy (AES). The sticking probability, S, of SiO has been determined as a function of coverage and of surface temperature for the clean and the oxidized tungsten surface. Over the temperature range studied and at zero coverage S = 1.0 and 0.88 for the clean and oxidized tungsten surfaces respectively. The results are consistent with both FDMS and AES. For coverage up to one monolayer there is one major adsorption state of SiO on the clean tungsten surface. FDMS shows that Tm = constant (Tm is the surface temperature at which the desorption rate is maximum) and that desorption from this state is described by a simple first order desorption process with activation energy, Ed = 85.3 kcal mole?1 and pre-exponential factor, ν = 2.1 × 1014 sec?1. AES shows that the 92 eV peak characteristic of silicon dominates. In contrast on the oxidized tungsten surface, Tm shifts to higher temperatures with increasing coverage. The data indicate a first order desorption process with a coverage dependent activation energy. At low coverage (θ ? 0.14) there is an adsorption state with Ed = 120 kcal mole?1 and ν = 7.6 × 1019, while at θ = 1.0, Ed = 141 kcal mole?1. This variation is interpreted as due to complex formation on the surface. AES shows that on oxidized tungsten, in contrast to clean tungsten, the dominant peaks occur at 64 and 78 eV, and these peaks are characteristic of higher oxidation states of silicon. Thus, it is concluded that SiO exists in different binding states on clean and oxidized tungsten surfaces.  相似文献   

19.
The emission characteristics and parameters of laser plumes of tin and CuSbSe2 compound are studied at distances of 1 and 7 mm from the target. The recombination times of singly and doubly charged tin ions are, respectively, 116 and 27 ns at a distance of 1 mm from the target and 148 and 64 ns at a distance of 7 mm. In the case of the CuSbSe2 compound, the recombination times of antimony and copper ions are determined to be, respectively, 60 and 75 ns at a distance of 1 mm and 707 and 976 ns at a distance of 7 mm. The time-averaged temperatures and concentrations of electrons of the tin laser plasma are determined at a distance of 7 mm from the target (T e = 0.42 eV and n e = 2.9 × 1015 cm?3), and the same parameters for the laser plasma based on the CuSbSe2 compound are determined at distances of 1 and 7 mm from the target (T e = 0.62 eV, n e = 1.4 × 1016 cm?3 and T e = 0.86 eV, n e = 8.4 × 1015 cm?3).  相似文献   

20.
Fluorescence quantum yields and lifetimes of the above given cations in selected levels within their lowest excited electronic states have been measured by a photoelectron—photon coincidence technique. These data, obtained under collision-free conditions, lead to the radiative and non-radiative rate constants as a function of the internal energy. The symmetry of the A$?state is 2A1 (X = CH3, CD3), 2Σ+ (X = Cl), but 2Π (X = Br, I) and the corresponding kr values for these two groups, 1–2 × 106s?1 and 2 × 107s?1 respectively, reflect the different nature of the transitions. Other essential features of the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号