首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A TDPAC investigation has been accomplished on (NH4)2 HfF6 between 14 and 620 K. A phase transition was observed below 390 K. The low temperature phase is characterized by two non-equivalent sites for hafnium atoms in a 1∶1 ratio. The high temperature phase, on the other hand, is depicted by a unique quadrupole interaction. Above 400 K, the compound decomposes successively to NH4 HfF5, NH4 Hf2F9 and HfF4. An enthalpy of 76±4 kJ/mol could be determined for the (NH4)2 HfF6→NH4 HfF5+NH4F chemical reaction. The hyperfine interaction and thermal evolution of (NH4)2 HfF6 was found to be quite similar to that of (NH4)2 ZrF6.  相似文献   

2.
Lithium ionic conductivity and spin-lattice relaxation rates were measured in Li8ZrO6 and Li6Zr2O7 solid electrolytes. It was found that the Li8ZrO6 solid electrolyte undergoes a transition to the superionic state in the temperature range 673–703 K. It was shown that Li+ ions are mobile in particular lattice positions of the Li6Zr2O7 phase, and that ionic conductivity is monotonic at an activation energy of 79.4 kJ/mol.  相似文献   

3.
It has been determined that the thermally activated α→β transition occurring in (NH4)2HfF6 at about 370 K is not always reversible. The β-phase hysteresis was investigated between 14 and 400 K. It was possible to explain previously published results without considering the Goldanskii-Karyagin effect.  相似文献   

4.
《Solid State Ionics》2006,177(1-2):89-93
The differential scanning calorimetry diagram of [Li0.2(NH4)0.8]2TeCl6 showed one anomaly at 526 K accompanied with a shoulder at 505 K.The conductivity plot exhibits two anomalies at 496 and 526 K, which characterize the beginning and the end of the crossing to superionic conductor state. The low temperature conduction is ensured essentially by Li+. A sudden jump confirms the presence of a superionic protonic transition related to the fast motion of Li+ and H+ ions. Above 526 K, the high temperature phase is characterized by high electrical conductivity (10 3 Ω 1 m 1) and low activation energy (Ea < 0.3 eV).The dielectric constant evolution as a function of frequency and temperature revealed the same anomaly.Transport properties in this material appear to be due to Li+ and H+ ions' hopping mechanism.  相似文献   

5.
The phase evolution, Raman spectroscopy and microwave dielectric properties of (Li1/4Nb3/4) doped ZrO2-TiO2 system were investigated. The effects of the Zr/Ti ratio and the (Li1/4Nb3/4) substitution were addressed. X-ray diffraction and electron diffraction analysis showed that the crystalline phases of the (Li1/4Nb3/4) doped ZrO2-TiO2 ceramics depended greatly on the Zr/Ti ratio. The sample with Zr/Ti ratio of 7/9 crystallized as Zr5Ti7O24 phase structure, a commensurate structure with a tripled a-axis superstructure and a ZTTZTT sequence. Secondary phase of monoclinic ZrO2 phase appeared when the Zr/Ti ratio was as high as 9/7. Raman analysis showed that the Raman peaks located at 651 and 624 cm−1 were assigned to the vibration modes of Zr-O octahedron and Ti-O octahedron, respectively. The dielectric constant and quality factor (Qf value) of the (Li1/4Nb3/4) doped ZrO2-TiO2 ceramics decreased slightly as the Zr/Ti ratio changed from 6/10 to 9/7. The temperature coefficient of resonate frequency (TCF value) was sensitive to the Zr/Ti ratio and it showed a negative value when the Zr/Ti ratio was close to 5:7. Meanwhile, the TCF value of ZrO2-TiO2 ceramics could also be tailored by the (Li1/4Nb3/4) substitution.  相似文献   

6.
Li2SnO3 has been synthesized at 1000 °C from Li2CO3 and SnO2 (high temperature form - HT) and it has also been prepared from ball-milled SnO2 and Li2CO3 at 650 °C (low temperature form - LT). The Li2SnO3 materials have been tested as a negative electrode for possible use in a Li-ion cell and their electrochemical behaviour has been compared with that of SnO2. In theory, Li2SnO3 and SnO2 should be able to cycle the same number of lithium atoms per tin atom but on the initial discharge SnO2 has inserted more lithium than Li2SnO3. During the initial discharge of SnO2 and Li2SnO3, a side electrochemical reaction seems to be occurring. The resultant compound apparently inserts lithium reversibly for potentials around 1 V; however, cycling from 0.02–2 V significantly degrades performance compared to 0.02–1 V. Li2SnO3 (HT) allows the de-insertion of more lithium than Li2SnO3 (LT) and SnO2 in the first charge. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

7.
Y. Zou  N. Inoue 《Ionics》2006,12(3):185-189
The chemical shifts of 7Li MAS nuclear magnetic resonance spectra in La4/3−yLi3yTi2O6 (LLTO) showed negative values and decreased with increasing lithium concentration. The chemical shifts were interpreted by Pople’s theory in which the 7Li chemical shifts were due to the local paramagnetic currents of the closest oxygen ions. Lattice parameters and coordination of oxygen were obtained by Rietveld analysis of X-ray diffraction data. The gross population and electron excitation energy were calculated by DV-Xα method.  相似文献   

8.
The quadrupole hyperfine interaction of ZrF4.3H2O is reported. This compound is observed to dehydrate to ZrF4 at 325 K. Spectra taken on cooling were observed to be time dependent, and the rehydration process involved was investigated at 293, 298 and 302 K. Contrary to what had previously been determined in HfF4.3H2O, no intermediate compound was observed to participate in the reaction investigated, thus confirming structural differences already reported to exist between these isoformulae compounds.  相似文献   

9.
From time-differential perturbed angular correlation (TDPAC) measurements, the monoclinic and triclinic crystal structures in hafnium and zirconium tetrafluoride trihydrates are found to be present simultaneously in both the compounds. From previous TDPAC and XRD investigations, a monoclinic crystal structure for HfF4·3H2O but, for its analogues zirconium compound, a triclinic structure was reported. Contrary to earlier reports, the triclinic fraction in HfF4·3H2O is found to be maximum (80%) at room temperature. In fact, the triclinic crystal structure of HfF4·3H2O is reported here which was not known prior to this report. In ZrF4·3H2O, a strong signal (80–90%) for the triclinic structure is found at room temperature while the monoclinic fraction appears as a weak signal (10–15%). Structural phase transitions in these trihydrate compounds have been observed in the temperature range 298–333 K.  相似文献   

10.
The hyperfine quadrupole interaction in HfF4.HF.2H2O was studied using the time differential perturbed angular correlation (TDPAC) technique. The electric field gradient (EFG) and the corresponding asymmetry parameter were measured in the temperature range from 9 to 350 K. The EFG is characterized by a rather strong increase with temperature, whereas the asymmetry parameter reaches its maximum value (η≈1) at aboutT=160 K. At 420 K, the complex is dehydrated and looses HF: The quadrupole parameters determined from subsequent TDPAC measurements are charateristic for HfF4.  相似文献   

11.
Variations of fluorescence intensity ratio of green (generated from Er3+ 2H11/2 and 4S3/2 levels) and red (generated from the sublevels of Er3+ 4F9/2 level) upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals have been studied as a function of temperature under 976 nm laser diode excitation. In the temperature range of 323-673 K, the maximum sensitivities of about 0.0134 K− 1 and 0.0104 K− 1 are obtained by using green and red emission, respectively. Er3+/Yb3+/Li+:ZrO2 nanocrystals show potential application value in nanoscale thermal sensor.  相似文献   

12.
The hyperfine interaction in Ni2HfF8·12H2O has been determined between 77 K and 1100 K by means of the time-differential perturbed angular correlation technique. From 200 K on, the one-site phase existing at lower temperatures undergoes a gradual phase transition until, at room temperature, the populations of both phases attain a 2:1 ratio. While the quadrupole frequencies characterizing them exhibit aT 3/2 thermal dependence, their population ratio seems to obey a Boltzmann distribution. At 350 K, when the η-value of the high temperature phase electric field gradient approaches its maximum value, the starting compound decomposes to NiHfF6·6H2O. A kinetics study of the Ni2HfF8·12H2O recovery at room temperature seems to indicate that a tri-dimensional diffusion mechanism is responsible for the corresponding reaction process. The first decomposition product of NiHfF6·6H2O left to atmospheric pressure is found to be NiHfF6·4H2O at 368 K and, between 414 K and 590 K, the high temperature cubic phase of NiHfF6 and Hf2OF6 can be simultaneously observed. Finally, monoclinic HfO2 appears from 1020 K on, having been preceded by an interaction which can be though of as depicting a preliminary stage in hafnia formation.  相似文献   

13.
High aspect-ratio Li2ZrO3 nanotubes were prepared by hydrothermal method using ZrO2 nanotubes layers as templates. Characterizations of SEM, XRD, TEM and CO2 adsorption were performed. The results showed that tetragonal Li2ZrO3 nanotubes arrays containing a little monoclinic ZrO2 can be obtained using this simple method. The mean diameter of the nanotubes is approximately 150 nm and the corresponding specific surface area is 57.9 m2 g−1. Moreover, the obtained Li2ZrO3 nanotubes were thermally analyzed under a CO2 flow to evaluate their CO2 capture property. It was found that the as-prepared Li2ZrO3 nanotubes arrays would be an effective acceptor for CO2 at high temperature.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1691-1695
Li3InBr6 undergoes a phase transition to a superionic phase at 314 K associated with a steep increase of the conductivity (σ = 4 × 10− 3 Scm 1 at 330 K). This superionic phase is isomorphous with Li3InCl6 in which a positional disorder at the In3+ site is introduced. A pseudo cubic-close-packing of the bromide ions is formed in this phase. On the other hand, a new superionic phase of LiInBr4 was found above ca 315 K and its structure was confirmed to be a defect spinel. The dynamic properties of the cations in these two superionic phases were investigated by 7Li and 115In NMR spectroscopy.  相似文献   

15.
New sulfide glasses in the Li2S–Sb2S3–P2S5 system have been prepared by classical quenching technique where glassy domain remains up to 50% molar addition of Li2S and electrical conductivities have been determined by impedance spectroscopy. Room temperature DC conductivity vs Li2S content exhibits two regions implying different conductivity mechanisms. The compositions of low lithium content presented low electronic conductivities close to 0.01 μS/cm at room temperature (due to Sb2S3 semiconducting properties). The compositions of medium lithium content could result to mixed ionic–electronic conductors with predominant ionic conductivity with a maximum close to 1 μS/cm; Arrhenius behavior is found between 25 °C and T g for all glasses, but activation energy is found to be somehow above most similar systems. A comparative study with glasses belonging to the other chalcogenide systems has been undertaken and values of the decoupling index are reported, and in order to validate conductivity data, a circuit equivalent circuit was proposed and fitted parameters were calculated with good agreement.  相似文献   

16.
The x-ray diffraction spectra of Li2B4O7 single crystals are investigated in the temperature range 80–300 K, and the lattice parameter c is determined in the same temperature range in the presence of a periodically varying temperature field. An incommensurate phase is not observed anywhere in the temperature range investigated, regardless of whether the crystals are subjected to a periodic temperature field. Fiz. Tverd. Tela (St. Petersburg) 39, 1461–1463 (August 1997)  相似文献   

17.
18.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

19.
In this work, Li2ZrF6, a lithium salt additive, is reported to improve the interface stability of LiNi0.5Mn1.5O4 (LNMO)/electrolyte interface under high voltage (4.9 V vs Li/Li+). Li2ZrF6 is an effective additive to serve as an in situ surface coating material for high-voltage LNMO half cells. A protective SEI layer is formed on the electrode surface due to the involvement of Li2ZrF6 during the formation of SEI layer. Charge/discharge tests show that 0.15 mol L?1 Li2ZrF6 is the optimal concentration for the LiNi0.5Mn1.5O4 electrode and it can improve the cycling performance and rate property of LNMO/Li half cells. The results obtained by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) demonstrate that Li2ZrF6 can facilitate the formation of a thin, uniform, and stable solid electrolyte interface (SEI) layer. This layer inhibits the oxidation decomposition of the electrolyte and suppresses the dissolution of the cathode materials, resulting in improved electrochemical performances.  相似文献   

20.
Large cross-section reaction channels were measured in the systems 6Li( 7Li) + 208Pb with high statistical accuracy at 5(3) energies around the Coulomb barrier from 29 to 39 MeV. These channels were assigned (mainly) to the breakup of 6Li, very loosely bound, into α + d and to the breakup of 5Li, produced by n-transfer to the target, into α + p and to similar processes with 7Li beam. The cross-sections with 6Li, S α = 1.475 MeV, are systematically larger than the 7Li ones. This reflects, most likely, the higher binding energy of 7Li, S α = 2.468 MeV. Theoretical predictions for the 6Li + 208Pb system which include for 6Li breakup to continuum states within a continuum discretized coupled-channels approach (CDCC) and resonant breakup plus n-transfer with DWBA reproduce the angular distribution shapes but still underestimate the cross-sections by a factor ∼ 3. Received: 15 January 2001 / Accepted: 3 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号