首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

2.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

3.
Protoporphyrin IX (PpIX) fluorescence was measured at different depths in a subcutaneous amelanotic melanoma model (LOX) in mice. PpIX was induced by topical application of 5‐aminolevulinic acid (ALA) and two of its derivatives, the methylester (MAL) and hexylester (HAL) onto the normal skin covering the tumor. The PpIX fluorescence intensity on the surface of the tumors was the highest for HAL, followed by ALA and MAL. Using equimolar concentrations (0.5 mmol g?1), HAL induced nearly twice as much fluorescence as ALA did. The depth profile of PpIX fluorescence was measured at different layers of the tumor, which was carefully sliced and controlled in situ ex vivo. The PpIX fluorescence was mainly localized within the upper 2 mm of the tissue for ALA and within 1 mm for MAL and HAL. There were no significant differences in the shape of the fluorescence excitation spectra, but the long wavelength excitation peak (633 nm) was so weak that these results are unreliable for depth estimation. When considering the low fluorescence intensity (around 5% of the intensity at the tumor surface), the actual penetration depth of HAL was comparable to that of ALA. The fluorescence after topical application of ALA and HAL was significantly above the background level down to a depth of around 6 mm, and there were traces of PpIX fluorescence even at the tumor base (10 mm). The fluorescence after topical application of MAL was detectable down to 1 mm. In the depth of 2–6 mm, the fluorescence was slightly higher for HAL than for ALA. Using the estimated diffusion coefficients for topically applied ALA (0.16 ± 0.03 mm2 h?1), MAL (0.045 ± 0.005 mm2 h?1) and HAL (0.037 ± 0.003 mm2 h?1), the behavior of the drugs after different application times could be estimated in this tumor model.  相似文献   

4.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

5.
Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6 h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3 h for ALA and by more than 50% at 6 h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.  相似文献   

6.
Laser-induced fluorescence (LIF) investigations have been performed in connection with photodynamic therapy (PDT) of basal cell carcinomas and adjacent normal skin following topical application of 5-aminolaevulinic acid (ALA) in order to study the kinetics of the protoporphyrin IX (PpIX) build-up. Five superficial and 10 nodular lesions in 15 patients are included in the study. Fluorescence measurements are performed prior to the application of ALA, 2, 4 and 6 h post ALA application, immediately post PDT (60 J cm-2 at 635 nm), and 2 h after the treatment. Hence, the build-up, photobleaching and re-accumulation of PpIX can be followed. Superficial lesions show a maximum PpIX fluorescence 6 h post ALA application, whereas the intensity is already the highest 2-4 h after the application in nodular lesions. Immediately post PDT, the fluorescence contribution at 670 nm from the photoproducts is about 2% of the pre-PDT PpIX fluorescence at 635 nm. Two hours after the treatment, a uniform distribution of PpIX is found in the lesion and surrounding normal tissue. During the whole procedure, the autofluorescence of the lesions and the normal skin does not vary significantly from the values recorded before the application of ALA.  相似文献   

7.
Abstract— The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (<1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.  相似文献   

8.
The aim of this study is to modify the chick chorioallantoic membrane (CAM) model into a whole-animal tumor model for photodynamic therapy (PDT). By using intraperitoneal (i.p.) photosensitizer injection of the chick embryo, use of the CAM for PDT has been extended to include systemic delivery as well as topical application of photosensitizers. The model has been tested for its capability to mimic an animal tumor model and to serve for PDT studies by measuring drug fluorescence and PDT-induced effects. Three second-generation photosensitizers have been tested for their ability to produce photodynamic response in the chick embryo/CAM system when delivered by i.p. injection: 5-aminolevulinic acid (ALA), benzoporphyrin derivative monoacid ring A (BPD-MA), and Lutetium-texaphyrin (Lu-Tex). Exposure of the CAM vasculature to the appropriate laser light results in light-dose-dependent vascular damage with all three compounds. Localization of ALA following i.p. injections in embryos, whose CAMs have been implanted with rat ovarian cancer cells to produce nodules, is determined in real time by fluorescence of the photoactive metabolite protoporphyrin IX (PpIX). Dose-dependent fluorescence in the normal CAM vasculature and the tumor implants confirms the uptake of ALA from the peritoneum, systemic circulation of the drug, and its conversion to PpIX.  相似文献   

9.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

10.
Photodynamic therapy with 5-aminolevulinic acid (ALA) derived protoporphyrin IX (PpIX) as photosensitizer is a promising treatment for basal cell carcinomas. Until now ALA has been administered topically as an oil-in-water cream in most investigations. The disadvantage of this administration route is insuffici?nt penetration in deeper, nodular tumours. Therefore we investigated intracutaneous injection of ALA as an alternative administration route. ALA was administered in 6-fold in the normal skin of three 6-week-old female Dutch pigs by intracutaneous injection of an aqueous solution of ALA (pH 5.0) in volumes of 0.1-0.5 ml and concentrations of 0.5-2% and by topical administration of a 20% ALA cream. During 8 h fluorescence of ALA derived PpIX was measured under 405 nm excitation. For the injection the measured fluorescence was shown to be dose dependent. All injected doses of 3 mg ALA or more lead to a faster initial increase rate of PpIX synthesis and significantly greater fluorescence than that measured after topical administration of ALA. Irradiation (60 Jcm(-2) for 10 min) of the spots was performed at 3.5 h after ALA administration. After 48 and 96 h visual damage scores were evaluated and biopsies were taken for histopathological examination. After injection of 2 mg ALA or more the PDT damage after illumination was shown to be significantly greater than after topical application of 20% ALA. An injected dose of 10 mg ALA (0.5 ml of a 2% solution) resulted in significantly more tissue damage after illumination than all other injected doses.  相似文献   

11.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

12.
Photodynamic therapy (PDT) based on the use of photoactivable porphyrins, such as protoporphyrin IX (PpIX), induced by the topical application of amino-levulinic acid (ALA) or its derivatives, ALA methyl-ester (m-ALA), is a treatment for superficial basal cell carcinoma (BCC), with complete response rates of over 80%. However, in the case of deep, nodular-ulcerative lesions, the complete response rates are lower, possibly related to a lower bioavailability of PpIX. Previous in vitro skin permeation studies demonstrated an increased penetration of amino-levulinic acid hexyl-ester (h-ALA) over ALA. In this study, we tested the validity of this approach in vivo on human BCCs. An emulsion containing 20% ALA (w/w) and preparations of h-ALA at different concentrations were applied topically to the normal skin of Caucasian volunteers to compare the PpIX fluorescence intensities with an optical fiber-based spectrofluorometer. In addition, the PpIX depth distribution and fluorescence intensity in 26 BCCs were investigated by fluorescence microscopy following topical application of 20% ALA and 1% h-ALA. We found that, for application times up to 24h, h-ALA is identical to ALA as a PpIX precursor with respect to PpIX fluorescence intensity, depth of penetration, and distribution in basal cell carcinoma, but has the added advantage that much smaller h-ALA concentrations can be used (up to a factor 13). We observed a non-homogenous distribution in BCCs with both precursors, independent of the histological type and depth of invasion in the dermis.  相似文献   

13.
Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)‐induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe‐based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)‐induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24‐week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC‐bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor‐selective increase in PpIX levels. Fluorescence‐based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA‐PDT.  相似文献   

14.
Photodynamic therapy (PDT) is a novel technique for local endoscopic treatment of gastrointestinal neoplasia. Current photosensitisers for PDT may cause prolonged skin phototoxicity. 5-Aminolaevulinic acid (ALA), a precursor of the photosensitiser protoporphyrin IX (PpIX), is more acceptable because of its short half-life and preferential accumulation in mucosa and mucosal tumour. We have treated 12 patients, median age 73 years (range 55-88) with oesophageal adenocarcinoma arising from Barrett's metaplasia (two carcinomas-in-situ, grade 0; 10 carcinomas, grade 1-11A based on endoluminal ultrasound in two and CT scanning in 10 patients). ALA (60 and 75 mg/kg body weight) was given orally in two or five equally divided doses. The PpIX distribution in stomach, normal oesophagus, Barrett's mucosa and carcinoma was measured by quantitative fluorescence photometry. PDT was performed using laser light (630 nm) delivered via a cylindrical diffuser 4-6 h after the first dose of ALA. The patients received one to four sessions of PDT. PpIX accumulation in the mucosa was two to three times that in the lamina propria. The differential distribution between carcinomatous and normal oesophageal mucosa was less marked (carcinoma:normal mucosa ratio = 1.4). Higher doses of ALA increased PpIX accumulation in all tissues but did not increase the differential PpIX distribution between tumour and normal oesophageal mucosa. After PDT using ALA (ALA/PDT), all mucosa showed superficial white necrotic changes and the histology confirmed fibrinoid necrosis. One patient with carcinoma-in-situ had the tumour eradicated after one treatment with no recurrence at 28 months. Another patient with a small T1 tumour required four ALA/PDT treatments, and died of other disease after 36 months. There was no evidence of recurrence. The tumour bulk in the other carcinomas was not significantly reduced. ALA/PDT has a potential for the eradication of small tumours but careful patient selection with endoluminal ultrasound is needed when using ALA/PDT to treat oesophageal cancer.  相似文献   

15.
Aminolevulinic acid photodynamic therapy (ALA-PDT) is a cancer therapy that combines the selective accumulation of a photosensitizer in tumor tissue with visible light (and tissue oxygen) to produce reactive oxygen species. This results in cellular damage and ablation of tumor tissue. The use of iron chelators in combination with ALA has the potential to increase the accumulation of the photosensitizer protoporphyrin IX (PpIX) by reducing its bioconversion to heme. This study compares directly for the first time the effects of the novel hydroxypyridinone iron chelating agent CP94 and the more clinically established iron chelator desferrioxamine (DFO) on the enhancement of ALA and methyl-aminolevulinate (MAL)-induced PpIX accumulations in cultured human cells. Cultured human cells were incubated with a combination of ALA, MAL, CP94 and DFO concentrations; the resulting PpIX accumulations being quantified fluorometrically. The use of iron chelators in combination with ALA or MAL was shown to significantly increase the amount of PpIX accumulating in the fetal lung fibroblasts and epidermal carcinoma cells; while minimal enhancement was observed in the normal skin cells investigated (fibroblasts and keratinocytes). Where enhancement was observed CP94 was shown to be significantly superior to DFO in the enhancement of PpIX accumulation.  相似文献   

16.
The photobleaching of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) was investigated during superficial photodynamic therapy (PDT) in normal skin of the SKH HRt hairless mouse. The effects of light dose and fluence rate on the dynamics and magnitude of photobleaching and on the corresponding PDT-induced dam-age were examined. The results show that the PDT damage cannot be predicted by the total light dose. Photo-bleaching was monitored over a wide range of initial PpIX fluorescence intensities. The rate of PpIX photo-bleaching is not a simple function of fluence rate but is dependent on the initial concentration of sensitizer. Also, at high fluence rates (50–150 mW/cm2, 514 nm) oxygen depletion is shown to have a significant effect. The rate of photobleaching with respect to light dose and the corresponding PDT damage both increase with decreasing fluence rate. We therefore suggest that the definition of a bleaching dose as the light dose that causes a 1/e reduction in fluorescence signal is insufficient to describe the dynamics of photobleaching and PDT-induced dam-age. We have detected the formation of PpIX photoproducts during the initial period of irradiation that were themselves subsequently photobleached. In the absence of oxygen, PpIX and its photoproducts are not photo-bleached. We present a method of calculating a therapeutic dose delivered during superficial PDT that demonstrates a strong correlation with PDT damage.  相似文献   

17.
5-Aminolevulinic acid (ALA) is a natural precursor of protoporphyrin IX (PpIX) and heme in cells. Photodynamic therapy (PDT) utilizes a metabolic imbalance in cancer cells, leading to increased PpIX generation from exogenous ALA. Due to chemical instability of ALA in therapeutic concentrations at pH values larger than 5.0 and at high temperatures, it looses its activity by spontaneous dimerization to 2,5-dicarboxyethyl-3,6-dihydropyrazine (DHPY). ALA esters are now supplementing ALA in PDT, but little is known about their stability. We have studied the stability of ALA and its methyl ester (MAL) stored under different conditions (temperatures, pH values) by measuring their ability to generate PpIX. 100mM solutions of both compounds were found to be stable at pH 4 and at 4 degrees C. However, at pH 5.5 they lost almost 10% of the initial activity during 5days of storage at 4 degrees C. The fastest decay of ALA and MAL was seen at pH 7.4 and at 37 degrees C, and followed first order kinetics. At pH 7.4 and at 4 degrees C MAL lost its PpIX producing ability more slowly than at 37 degrees C. Our work shows that solutions should be prepared immediately before use and stored at low temperatures. The pH of stock solutions should not exceed 5.  相似文献   

18.
Significant amounts of protoporphyrin IX (PpIX) are formed after 6 min of topical application of 5-aminolevulinic acid (ALA) and its hexylester derivative, whereas PpIX is formed after 10 min of topical application of ALA-methylester derivative in normal mouse skin at 37 degrees C. Lowering the skin temperature to 28-32 degrees C by the administration of the anesthetic Hypnorm-Dormicum reduces the PpIX fluorescence by a factor of 2-3. Practically no PpIX was formed as long as the skin temperature was kept at 12-18 degrees C. At around 30 degrees C PpIX fluorescence appears later after application of ALA-ester derivatives (14-20 min) than after application of ALA (8 min), indicating differences in their bioavailability (delayed penetration through the stratum corneum, cellular uptake, conversion to ALA, PpIX production) in mouse skin in vivo. The difference in lag time in the PpIX formation after application of ALA and ALA-esters may be partly related to deesterification of the ALA-ester molecules. The temperature dependence of PpIX production may be used for improvement of photodynamic therapy with ALA and ALA-ester derivatives, where accumulation of PpIX can be selectively enhanced by increasing the temperature of the target tissue.  相似文献   

19.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

20.
Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71 +) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71 + T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to norma] lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号