首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
Phase separation of gas–liquid and liquid–liquid microflows in microchannels were examined and characterized by interfacial pressure balance. We considered the conditions of the phase separation, where the phase separation requires a single phase flow in each output of the microchannel. As the interfacial pressure, we considered the pressure difference between the two phases due to pressure loss in each phase and the Laplace pressure generated by the interfacial tension at the interface between the separated phases. When the pressure difference between the two phases is balanced by the Laplace pressure, the contact line between the two phases is static. Since the contact angle characterizing the Laplace pressure is restricted to values between the advancing and receding contact angles, the Laplace pressure has a limit. When the pressure difference between the two phases exceeds the limiting Laplace pressure, one of the phases leaks into the output channel of the other phase, and the phase separation fails. In order to experimentally verify this physical picture, microchips were used having a width of 215 μm and a depth of 34 μm for the liquid–liquid microflows, a width of 100 μm and a depth of 45 μm for the gas–liquid microflows. The experimental results of the liquid–liquid microflows agreed well with the model whilst that of the gas–liquid microflows did not agree with the model because of the compressive properties of the gas phase and evaporation of the liquid phase. The model is useful for general liquid–liquid microflows in continuous flow chemical processing.  相似文献   

4.
《Fluid Phase Equilibria》2004,216(1):175-182
An automated apparatus developed for the determination of liquid–liquid and solid–liquid equilibrium temperatures with a resolution of 1 mK and a traceable accuracy of 0.01 K is described. The amount of light transmitted through six sample cells placed in a computer controlled thermostat is recorded at heating or cooling rates from 0.075 to 15 K h−1. The construction does not require expensive optic equipment like lasers, glass fibre optics or photomultipliers, but is based on light emitting diodes (LED) as light sources and light dependent resistors (LDR) or photodiodes as detectors. As shown by the discussed examples, the instrument has a wide range of possible applications from the investigation of simple one-component and binary systems to the study of the complicated phase behavior of surfactant solutions.  相似文献   

5.
Dispersive liquid–liquid microextraction (DLLME) and hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) combined with HPLC–DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H2SO4 as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7–6.4% and 14.2–15.9%, respectively; and for HF-LLLME were 0.7–5.2% and 3.3–10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.  相似文献   

6.
A stir membrane liquid phase microextraction procedure working under the three-phase mode is proposed for the first time for the determination of six anti-inflammatory drugs in human urine. The target compounds are isolated and preconcentrated using a special device that integrates the extractant and the stirring element. An alkaline aqueous solution is used as extractant phase while 1-octanol is selected as supported liquid membrane solvent. After the extraction, all the analytes are determined by liquid chromatography (LC) with ultraviolet detection (UV). The analytical method is optimized considering the main involved variables (e.g., pH of donor and acceptor phases, extraction time, stirring rate) and the results indicate that the determination of anti-inflammatory drugs at therapeutic and toxic levels is completely feasible. The limits of detection are in the range from 12.6 (indomethacin) to 30.7 μg/L (naproxen). The repeatability of the method, expressed as relative standard deviation (RSD, n = 5) varies between 3.4% (flurbiprofen) and 5.7% (ketoprofen), while the enrichment factors are in the range from 35.0 (naproxen) to 72.5 (indomethacin).  相似文献   

7.
Thermodynamic and surface properties of Ge–Ga and Ge–Sb liquid alloys have been studied using statistical mechanical formulations based on complex formation and that based on the concept of layered structure near the interface. The study showed that low level of complex formation of the form Ge 2 Sb exists in Ge–Sb toward the Ge-rich end of the concentration range and the surface properties of Ge–Ga are almost equal to their corresponding bulk equivalent.  相似文献   

8.
Partial miscibility in binary systems {N-methylpiperidine–water} and {2-methylpiperidine–water} was studied. The temperatures of liquid–liquid separation were determined as function of composition using both calorimetric technique and phase equilibrium cell. The densities of {amine–water} mixtures were determined in the domain of total miscibility at temperatures between 288 K and 338 K. Excess molar volumes were derived from experimental density data and fit to a Redlich–Kister polynomial.  相似文献   

9.
A fast, simple, and sensitive HPLC–FD method is described for determination of ochratoxin A (OTA) in pig kidney and muscle; a small mass (<2.5 g) of sample and a relatively small volume (<15 mL) of a non-halogenated extraction solvent are required. Ochratoxin B, systematically absent from all the samples investigated, was used as internal standard. Liquid–liquid partition was used for sample clean-up. Recoveries at the 1 ng g–1 level were 86±15% and 74±8% for kidney and muscle, respectively, and detection limits were 0.14 and 0.15 ng g–1. Clean-up by solid-phase extraction (SPE) is required for pig liver. A survey of the OTA content of tissues of pigs slaughtered in southern Italy revealed that 52 out of 54 analysed samples were contaminated; the OTA concentration in kidney ranged between 0.26 and 3.05 ng g–1. The effect of measurement precision on compliance with legal limits is also discussed.  相似文献   

10.
A selective, sensitive, and accurate high-performance liquid chromatographic method for determination of diltiazem in plasma samples has been developed and validated. The effects of mobile phase composition, buffer concentration, mobile phase pH, and concentration of organic modifiers on retention of diltiazem and internal standard were investigated. Solid-phase and liquid–liquid extraction were examined and proposed for isolation of the drug and elimination of endogenous plasma interferences. A 5 m Lichrocart Lichrospher 60 RP-select B chromatographic column was used; the mobile phase was acetonitrile–0.025 mol L–1 KH2PO4 (pH 5.5), 35:65 ( v / v) at a flow-rate of 1.5 mL min–1. The detection wavelength was 215 nm. The calibration plots were linear in the concentration range 20.0–500.0 ng mL–1. The method has been implemented to monitor diltiazem levels in patient samples.  相似文献   

11.
Dispersive liquid–liquid microextraction (DLLME) has become a very popular environmentally benign sample-preparation technique, because it is fast, inexpensive, easy to operate with a high enrichment factor and consumes low volume of organic solvent. DLLME is a modified solvent extraction method in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In this review, in order to encourage further development of DLLME, its combination with different analytical techniques such as gas chromatography (GC), high-performance liquid chromatography (HPLC), inductively coupled plasma-optical emission spectrometry (ICP-OES) and electrothermal atomic absorption spectrometry (ET AAS) will be discussed. Also, its applications in conjunction with different extraction techniques such as solid-phase extraction (SPE), solidification of floating organic drop (SFO) and supercritical fluid extraction (SFE) are summarized. This review focuses on the extra steps in sample preparation for application of DLLME in different matrixes such as food, biological fluids and solid samples. Further, the recent developments in DLLME are presented. DLLME does have some limitations, which will also be discussed in detail. Finally, an outlook on the future of the technique will be given.  相似文献   

12.
It is well accepted that the morphology of the nanomaterials has great effect on the properties and hence their applications. Therefore, morphology of materials has become a focus of research in the scientific world. The present study shows that interfacial polymerization and subsequent self-assembly provides a control over the morphology, nanorod/nanosheet, of polyaniline (PANI) films synthesized by liquid–liquid interface reaction technique and solid–liquid interface reaction technique. The synthesized PANI films and its particulate structure are characterized by using various spectroscopic techniques such as UV–visible, ATR-IR, Raman and XPS. The study confirmed the formation, the structure, the size and shape of particles and morphology of PANI by using analytical techniques namely, SAED, SEM and TEM. An important observation is that doping with HCl significantly improves the nanorod formation at the interface. The doped PANI electrode exhibits a higher area with rectangular shape in CV cycle and better cycle stability when compared with the performance of undoped PANI films. We believe that the results of these studies can give valuable leads to manoeuvre formation of PANI films with desired morphology for various applications.
Figure
Time and temperature-dependent morphology of PANI layer leading to the formation of one/two-dimensional structures namely, PANI rods/sheets, is achieved by monitoring of self-assembly of nano particulate film formed at liquid–liquid/solid–liquid interfaces  相似文献   

13.
《Fluid Phase Equilibria》1999,157(2):169-180
The Gibbs ensemble algorithm is implemented to determine the vapour–liquid and liquid–liquid phase coexistence of dilute ternary fluid mixtures interacting via a Lennard–Jones potential. Calculations are reported for mixtures with a third component characterised by different intermolecular potential energy parameters. Comparison with binary mixture data indicates that the choice of energy parameter for the third component affects the composition range of vapour–liquid substantially. The addition of a third component lowers the energy of liquid phase while slightly increasing the energy of the vapour phase.  相似文献   

14.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

15.
Nitriles are strong polar compounds showing a highly non-ideal behavior, which makes them challenging systems from a modeling point of view; in spite of this, accurate predictions for the vapor–liquid equilibria of these systems are needed, as some of them, like acetonitrile (CH3CN) and propionitrile (C2H5CN), play an important role as organic solvents in several industrial processes. This work deals with the calculation of the vapor–liquid equilibria (VLE) of nitriles and their mixtures by using the crossover soft-SAFT Equation of State (EoS). Both polar and associating interactions are taken into account in a single association term in the crossover soft-SAFT equation, while the crossover term allows for accurate calculations both far from and close to the critical point. Molecular parameters for acetonitrile, propionitrile and n-butyronitrile (C3H7CN) are regressed from experimental data. Their transferability is tested by the calculation of the VLE of heavier linear nitriles, namely, valeronitrile (C4H9CN) and hexanonitrile (C5H11CN), not included in the fitting procedure. Crossover soft-SAFT results are in excellent agreement with experimental data for the whole range of thermodynamic conditions investigated, proving the robustness of the approach. Parameters transferability has also been used to describe the isomers n-butyronitrile and i-butyronitrile. Finally, the nitriles soft-SAFT model is further tested in VLE calculation of mixtures with benzene, carbon tetrachloride and carbon dioxide, which proved to be satisfactory as well.  相似文献   

16.
A sensitive and straightforward liquid–liquid–liquid microextraction method was developed to preconcentrate and cleanup antidepressants, including mirtazapine, venlafaxine, escitalopram, fluoxetine, and fluvoxamine, from biological samples before analyzing with high-performance liquid chromatography. The essential novelty of this study is using magnetic ionic liquids as the extraction phase in the lumen of hollow fiber and preparing a liquid magnetic stir bar. In this method, polypropylene hollow fiber was utilized as the permeable membrane for the analyte extraction. Six magnetic ionic liquids consisting of the transition metal and rare earth compounds were synthesized and then hollow fiber lumen was injected as acceptor phase to extract the antidepressants. Besides, 3-pentanol as a water-immiscible solvent was impregnated in the hollow fiber wall pores. The effective factors in the method were optimized with the central composition design. The resultant calibration curves were linear over the concentration range of 0.8–400.0 ng mL−1 (R2 ≥ 0.996). The method displayed the proper detection limit (0.11–0.24 ng mL−1), the reasonable limit of quantification (≤0.79 ng mL−1), wide linear ranges, high preconcentration factors (≥294.3), and suitable relative standard deviation (2.31–5.47%) for measuring antidepressant medications. Analysis of human milk and urine samples showed acceptable recoveries of 96.5–103.8% with excellent relative standard deviations lower than 5.95%.  相似文献   

17.
《Fluid Phase Equilibria》2001,178(1-2):239-257
Bubble points of the HCl–water–isopropanol and the HCl–water–isopropanol–benzene systems and liquid–liquid equilibria (LLE) of the HCl–water–benzene and the HCl–water– isopropanol–benzene systems were measured at 25–85°C and 30–70°C, respectively. The electrolyte nonrandom two-liquid model proposed by Chen et al. [C.-C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, AIChE J. 28 (1982) 588–596] can satisfactorily correlate bubble points and liquid–liquid equilibria of the present mixed-solvent electrolyte systems over the entire range of temperature and concentrations using only binary adjustable parameters.  相似文献   

18.
《Fluid Phase Equilibria》1999,163(1):79-98
Phase equilibria in binary and ternary polyolefin systems are calculated using the cubic equation of state proposed by Sako–Wu–Prausnitz (SWP). Calculations were done for high-pressure phase equilibria in ethylene/polyethylene (LDPE) systems and for liquid–liquid equilibria (LLE) in systems containing either high-density polyethylene or poly(ethylene-co-propylene). The calculations for the copolymer/solvent systems are compared with those using the SAFT EOS. The two equations of state can describe UCST, LCST as well as U-LCST behaviour with similar accuracy. Whereas, the binary interaction parameter is temperature-independent for SAFT, it is found to be a function of temperature for the SWP model. Moreover, the influence of an inert gas on the LCST of the polyethylene/hexane system is investigated using the SWP EOS. The polydispersity of the different polyethylenes is considered in the phase equilibrium calculations using pseudocomponents chosen by the moments of the experimental molecular weight distributions.  相似文献   

19.
Activities of components in liquid Al–Ga and In–Sn alloys, the separation coefficients and vapour–liquid phase equilibrium in vacuum distillation were predicted using the molecular interaction volume model as a function of the activity coefficients. The results indicated that both Al and In are preferentially volatilised into vapour phase while Ga and Sn remain in residue. Similarly, we found that both the mass fraction and the content of Al and In in vapour phase increase as distillation temperature increases such that when the content of Al is 0.005985 wt% and In is 0.004141 wt% in vapour phase, respectively, in liquid phase, it was 70 wt% at T = 1073 K for both. The calculated values of activity and activity coefficients at various temperatures are presented. Comparison of the predicted values with experimental data indicates good agreement, thus verifying from statistical thermodynamics viewpoint that the model is stable and reliable.  相似文献   

20.
A simple and efficient method, based on ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction (UESA-DLLME) followed by high-performance liquid chromatography (HPLC) has been developed for extraction and determination of ketoconazole and econazole nitrate in human blood samples. In this method, a common cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as dispersant. Chloroform (40 μL) as extraction solvent was added rapidly to 5 mL blood containing 0.068 mg mL−1 CTAB. The mixture was then sonicated for 2 min to disperse the organic chloroform phase. After the extraction procedure, the mixture was centrifuged to sediment the organic chloroform phase, which was collected for HPLC analysis. Several conditions, including type and volume of extraction solvent, type and concentration of the surfactant, ultrasound time, extraction temperature, pH, and ionic strength were studied and optimized. Under the optimum conditions, linear calibration curves were obtained in the ranges 4–5000 μg L−1 for ketoconazole and 8–5000 μg L−1 for econazole nitrate, with linear correlation coefficients for both >0.99. The limits of detection (LODs, S/N = 3) and enrichment factors (EFs) were 1.1 and 2.3 μg L−1, and 129 and 140 for ketoconazole and econazole nitrate, respectively. Reproducibility and recovery were good. The method was successfully applied to the determination of ketoconazole and econazole nitrate in human blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号