首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new solid phase microextraction (SPME) fiber based on high-temperature silicone glue coated on a stainless steel wire is presented. The fiber coating can be prepared easily in a few minutes, it is mechanically stable and exhibits relatively high thermal stability (up to 260 °C). The extraction properties of the fiber to benzene, toluene, ethylbenzene, and xylenes (BTEX) were examined using both direct and headspace SPME modes coupled to gas chromatography-flame ionization detection. The effects of the extraction and desorption parameters including extraction and desorption time, sampling and desorption temperature, and ionic strength on the extraction/desorption efficiency have been studied. For both headspace and direct SPME the calibration graphs were linear in the concentration range from 0.5 μg L−1 to 10 mg L−1 (R2 > 0.996) and detection limits ranged from 0.07 to 0.24 μg L−1. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.8 and 21.5%, respectively. Finally, headspace SPME was applied to determine BTEX in petrol station waste waters with spiked recoveries in the range of 89.7-105.2%.  相似文献   

2.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.  相似文献   

3.
This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H3PO4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L−1, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 μg L−1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.  相似文献   

4.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

5.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   

6.
A new ionic liquid (IL) based solid-phase microextraction (SPME) fiber was investigated and used for headspace (HS) extraction of methyl tert-butyl ether (MTBE) in a gasoline sample. Using the new IL coated HS-SPME fiber with the combination of gas chromatography-flame ionization detection (GC-FID); sub-to-low μg L−1 concentrations of MTBE were detected. Four different ILs including 1-butyl-3-methylimidazolium tetraflouroborate ([C4C1IM] [BF4]), 1-octyl-3-methylimidazolium tetraflouroborate ([C8C1IM] [BF4]), 1-octyl-3-methylimidazolium hexaflourophosphate ([C8C1IM] [PF6]) and 1-ethyl-3-methylimidazolium ethylsulphate ([C2C1IM] [ETSO4]) were synthesized and examined for extraction, preconcentration and determination of MTBE. It was observed that [C8C1IM] [BF4] showed the highest extraction efficiency and possessed the best extractability for MTBE. The fiber coating takes up the compounds from the sample by absorption in the case of liquid coatings. The calibration graph was linear in a concentration range of 1-120 μg L−1 (R2 > 0.994) with the detection limit of 0.09 μg L−1 level. The new IL-coated fiber was applied successfully for the determination of MTBE in a gasoline sample with good recoveries between 90 and 95%.  相似文献   

7.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

8.
A novel solid-phase microextraction (SPME) fiber is fabricated through the anodization of Ti wire substrates in an electrolyte containing ethylene glycol and NH4F. By a combination of field emission scanning electron microscope and X-ray photoelectron spectroscope studies, it is shown that perpendicularly orientated and well-aligned TiO2 nanotubes are grown in situ on the Ti wire substrate. The SPME fiber coupled with gas chromatograph (GC) is then used to extract polycyclic aromatic hydrocarbons (PAHs), anilines, phenols, and alkanes from standard and real water samples, and exhibits high selectivity for PAHs. After the optimization of adsorption factors (pH, ionic strength, time and temperature) and desorption factors (time and temperature) of the SPME fiber for PAHs, the limit of detection (LOD) of less than 0.1 μg L−1 is achieved, and the calibration curves are all linear (R2 ≥ 0.9898) in the range from 0.1 to 1000 μg L−1. Beyond that, the SPME fiber has high strength, large surface area, good stability at high temperature and in acid and alkali solutions, and long service life, making it have strong application potentials in the selective extraction of PAHs from complex samples at trace levels.  相似文献   

9.
A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 °C for 3 min. A detection limit of 0.1 μg L−1 was obtained. The linear range was 1-1000 μg L−1. The relative standard deviation was 10.64% (n = 7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 μg g−1) and potato crisps (2.2 μg g−1).  相似文献   

10.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

11.
In this research, we combined ionic liquid-based dispersive liquid-liquid micro-extraction (IL-based DLLME) with stopped-flow spectrofluorometry (SFS) to evaluate the concentration of aluminum in different real samples at trace level. 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid and 8-hydroxyquinoline (oxine), which forms a highly fluorescent complex with Al3+, were chosen as the extraction solvent and chelating agent, respectively. The hydrophobic Al-oxine complex was extracted into the [Hpy][PF6] and separated from the aqueous phase. Then, the concentration of the enriched aluminum in the sediment phase was determined by SFS. Some effective parameters that influence the SFS signals and the micro-extraction efficiency, such as the suction and sending time, the concentration of the chelating agent, pH, the amount of the ionic liquid, the type of disperser solvent and diluting agent, ionic strength, extraction time, equilibration temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.05 μg L−1 and 100, respectively. The relative standard deviation (RSD) for six replicate determinations of 6 μg L−1 Al was 1.7%. The calibration graph using the pre-concentration system was linear in the range of 0.06-15 μg L−1 with a correlation coefficient of 0.9989. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of aluminum in several water, fruit juice and food samples.  相似文献   

12.
A novel solid-phase microextraction (SPME) fiber coated with multiwalled carbon nanotubes (MWCNTs)/Nafion was developed and applied for the extraction of polar aromatic compounds (PACs) in natural water samples. The characteristics and the application of this fiber were investigated. Electron microscope photographs indicated that the MWCNTs/Nafion coating with average thickness of 12.5 μm was homogeneous and porous. The MWCNTs/Nafion coated fiber exhibited higher extraction efficiency towards polar aromatic compounds compared to an 85 μm commercial PA fiber. SPME experimental conditions, such as fiber coating, extraction time, stirring rate, desorption temperature and desorption time, were optimized in order to improve the extraction efficiency. The calibration curves were linear from 0.01 to 10 μg mL−1 for five PACs studied except p-nitroaniline (from 0.005 to 10 μg mL−1) and m-cresol (from 0.001 to 10 μg mL−1), and detection limits were within the range of 0.03–0.57 ng mL−1. Single fiber and fiber-to-fiber reproducibility were less than 7.5 (n = 7) and 10.0% (n = 5), respectively. The recovery of the PACs spiked in natural water samples at 1 μg mL−1 ranged from 83.3 to 106.0%.  相似文献   

13.
An improved multiple co-polymerization technique was developed to prepare a novel molecularly imprinted polymer (MIP)-coated solid-phase microextraction (SPME) fiber with propranolol as template. Investigation was performed for the characteristics and application of the fibers. The MIP coating was highly crosslinked and porous with the average thickness of only 25.0 μm. Consequently, the adsorption and desorption of β-blockers within the MIP coating could be achieved quickly. The specific selectivity was discovered with the MIP-coated fibers to propranolol and its structural analogues such as atenolol, pindolol, and alprenolol. In contrast, only non-specific adsorption could be shown with the non-imprinted polymer (NIP)-coated fibers, and the extraction efficiencies of propranolol and pindolol with the MIP-coated fibers were higher markedly than that with the commercial SPME fibers. A MIP-coated SPME coupled with high-performance liquid chromatography (HPLC) method for propranolol and pindolol determination was developed under the optimized extraction conditions. Linear ranges for propranolol and pindolol were 20–1000 μg L−1 and detection limits were 3.8 and 6.9 μg L−1, respectively. Propranolol and pindolol in the spiked human urine and plasma samples, extracted with organic solvent firstly, could be simultaneous monitored with satisfactory recoveries through this method.  相似文献   

14.
A new microextraction technique based on ionic liquid solid-phase microextraction (IL-SPME) was developed for determination of trace chlorophenols (CPs) in landfill leachate. The synthesized ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]), was coated onto the spent fiber of SPME for extraction of trace CPs. After extraction, the absorbed analytes were desorbed and quantified using gas chromatography–mass spectrometry (GC/MS). The term of the proposed method is as ionic liquid-coated of solid-phase microextraction combined with gas chromatography–mass spectrometry (IL-SPME-GC/MS). No carryover effect was found, and every laboratory-made ionic liquids-coated-fiber could be used for extraction at least eighty times without degradation of efficiency. The chlorophenols studied were 2,4-dichlorophenol (2,4-DP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and pentachlorophenol (PCP). The best results of chlorophenols analysis were obtained with landfill leachate at pH 2, headspace extraction for 4 min, and thermal desorption with the gas chromatograph injector at 240 °C for 4 min. Linearity was observed from 0.1 to 1000 μg L−1 with relative standard deviations (RSD) less than 7% and recoveries were over 87%. The limit of detection (LOD) for pentachlorophenol was 0.008 μg L−1. The proposed method was tested by analyzing landfill leachate from a sewage farm. The concentrations of chlorophenols were detected to range from 1.1 to 1.4 μg L−1. The results demonstrate that the IL-SPME-GC/MS method is highly effective in analyzing trace chlorophenols in landfill leachate.  相似文献   

15.
A new generation polymeric ionic liquid (PIL), poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (poly(VBHDIm+ NTf2)), was synthesized and is shown to exhibit impressive selectivity towards the extraction of 12 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples when used as a sorbent coating in direct-immersion solid-phase microextraction (SPME) coupled to gas chromatography (GC). The PIL was imparted with aromatic character to enhance π–π interactions between the analytes and the sorbent coating. For comparison purposes, a PIL with similar structure but lacking the π–π interaction capability, poly(1-vinyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide) (poly(HDIm+ NTf2)), as well as a commercial polydimethylsiloxane (PDMS) sorbent coating were evaluated and exhibited much lower extraction efficiencies. Extraction parameters, including stir rate and extraction time, were studied and optimized. The detection limits of poly(VBHDIm+ NTf2), poly(HDIm+ NTf2), and PDMS coatings varied between 0.003–0.07 μg L−1, 0.02–0.6 μg L−1, and 0.1–6 μg L−1, respectively. The partition coefficients (log Kfs) of eight PAHs to the three studied fiber coatings were estimated using a static SPME approach. This study represents the first report of analyte partition coefficients to any PIL-based material.  相似文献   

16.
A sample pretreatment method for the determination of 18 chlorophenols (CPs) in aqueous samples by derivatization liquid-phase microextraction (LPME) was investigated using gas chromatography–mass spectrometry. Derivatization reagent was spiked into the extraction solvent to combine derivatization and extraction into one step. High sensitivity of 18 CPs derivatives could be achieved after optimization of several parameters such as extraction solvent, percentage of derivatization reagent, extraction time, pH, and ionic strength. The results from the optimal method showed that calibration ranging from 0.5 to 500 μg L−1 could be achieved with the RSDs between 1.75% and 9.39%, and the limits of detection (LOD) are ranging from 0.01 to 0.12 μg L−1 for the CPs. Moreover, the proposed LPME method was compared with solid-phase microextraction (SPME) coupled with on-fiber derivatization technique. The results suggested that using both methods are quite agreeable. Furthermore, the recoveries of LPME evaluated by spiked environmental samples ranged from 87.9% (3,5-DCP) to 114.7% (2,3,5,6-TeCP), and environmental water samples collected from the Pearl River were analyzed with the optimized LPME method, the concentrations of 18 CPs ranged from 0.0237 μg L−1 (3,5-DCP) to 0.3623 μg L−1 (2,3,6-TCP).  相似文献   

17.
A novel solid-phase microextraction (SPME) fiber coating was prepared with siloxane-modified polyurethane acrylic resin by photo-cured technology. The ratio of two monomers was investigated to obtain good microphase separation structure and better extraction performance. The self-made fiber was then applied to organophosphorus pesticides (OPPs) analysis and several factors, such as extraction/desorption time, extraction temperature, salinity, and pH, were studied. The optimized conditions were: 15 min extraction at 25 °C, 5% Na2SO4 content, pH 7.0 and 4 min desorption in GC inlet. The self-made fiber coating exhibited better extraction efficiency for OPPs, compared with three commercial fiber coatings. Under the optimized conditions, the detection limits of 11 OPPs were from 0.03 μg L−1 to 0.5 μg L−1. Good recoveries and repeatabilities were obtained when the method was used to determine OPPs in ecological textile.  相似文献   

18.
A method based on solid-phase microextraction (SPME) and gas chromatography with mass spectrometry (GC/MS) for the determination of 18 organophosphorus pesticides (OPPs) in textiles is described. Commercially available SPME fibers, 100 μm PDMS and 85 μm PA, were compared and 85 μm PA exhibited better performance to the OPPs. Various parameters affecting SPME, including extraction and desorption time, extraction temperature, salinity and pH, were studied. The optimized conditions were: 35 min extraction at 25 °C, 5% NaSO4 content, pH 7.0, and 3.5 min desorption in GC injector port at 250 °C. The linear ranges of the SPME-GC/MS method were 0.1-500 μg L−1 for most of the OPPs. The limits of detection (LODs) ranged from 0.01 μg L−1 (for bromophos-ethyl) to 55 μg L−1 (for azinphos-methyl) and the RSDs were between 0.66% and 9.22%. The optimized method was then used to analyze 18 OPPs in textile sample, and the determined recoveries were ranged from 76.7% to 126.8%. Moreover, the distribution coefficients of the OPPs between 85 μm PA fiber and simulative sweat solution (Kpa/s) were determined. The determined Kpa/s of the OPPs correlated well with their octanol-water partition coefficients (r = 0.764 and 0.678) and water solubility (= −0.892 and −0.863).  相似文献   

19.
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid–liquid microextraction (DLLME) was investigated using gas chromatography–mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1–1000 μg L−1 and 0.01–100 μg L−1 with the limits of detection (LOD) of 0.03 μg L−1 and 0.002 μg L−1 for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L−1 and 0.037 ± 0.001 μg L−1, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3–106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples.  相似文献   

20.
Hou JG  Ma Q  Du XZ  Deng HL  Gao JZ 《Talanta》2004,62(2):241-246
Mesoporous materials were employed as fast, sensitive and efficient fiber coatings of solid-phase microextraction (SPME) for the first time. Three micrometer as-synthesized C16-MCM-41 particles were immobilized onto stainless steel wire with 100 μm coating thickness. In combination with high performance liquid chromatography (HPLC), extraction efficiency and selectivity of C16-MCM-41 were investigated using aromatic hydrocarbons. Effect of extraction and desorption time, extraction temperature, stirring rate and ionic strength on extraction efficiency were examined. Aanalytical merits of SPME with C16-MCM-41 coating were evaluated. The chromatographic peak area is proportional to the concentration of anthracene in the range 0.5-150 μg l−1. The limit of detection was 0.05 μg l−1 (S/N=3) and the relative standard deviation (R.S.D.) was 0.033%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号