首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary Extraction of Pu(IV) from oxalate supernatant was carried out employing 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) in xylene as extractant. The conditions for quantitative extraction were determined by the variation of ligand, oxalic acid and nitric acid concentration. Quantitative stripping was achieved using a mixture of 0.4M oxalic acid and 0.4M ammonium oxalate. Extraction of Pu(IV) from synthetic oxalate supernatant solution containing 3M nitric acid and 0.2M oxalic acid was investigated under various loading conditions employing 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone in xylene as extractant. Under uranium loading conditions the Pu extraction decreased significantly while with increased Pu loading whereas the DPu value was influenced marginally. The effect of a redox reagent on Pu extraction was also investigated.  相似文献   

2.
Solvent extraction of Pu(IV) and Am(III) from aqueous nitric acid into room temperature ionic liquid (RTIL) by an acidic extractant HDEHP (di-2-ethyl hexyl phosphoric acid) was carried out. The D values indicated substantial extraction for Pu(IV) and poor extraction for Am(III) at 1M aqueous nitric acid concentration. However at lower aqueous nitric acid concentrations (pH 3), the Am(III) extraction was found to be quantitative. The least squares analysis of the extraction data for both the actinides ascertained the stoichiometry of the extracted species in the RTIL phase for Pu(IV) and Am(III) as [PuH(DEHP)2]3+, AmH(DEHP)2+. From the D values at two temperatures, the thermodynamic parameters of the extraction reaction for Pu(IV) was calculated.  相似文献   

3.
The separation of uranium and plutonium from oxalate supernatant, obtained after precipitating plutonium oxalate, containing ~10 g/l uranium and 30–100 mg/l plutonium in 3M HNO3 and 0.10–0.18M oxalic acid solution has been carried out. In one extraction step with 30% TBP in dodecane: ~92% of uranium and ~7% of Pu is extracted. The raffinate containing the remaining U and Pu is extracted with 0.2M CMPO+1.2 M TBP in dodecane and near complete extraction of both the metal ions is achieved. The metal ions are back extracted from organic phases using suitable stripping agents. The recovery of both the metal ions separately is >99%. The uranium species extracted into the TBP phase from the HNO3+oxalic acid medium was identified as UO2(NO3)2·2TBP.  相似文献   

4.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

5.
The extraction of uranium(VI) from an aqueous HNO3 phase into an organic phase consisting of a polyurethane foam immobilizing a solution of di(2-ethylhexyl)phosphoric acid (HDEHP) in o-dichlorobenzene has been investigated at varying concentrations of nitric acid and HDEHP. The mechanism of the extraction is discussed on the basis of the results obtained. The aggregation number of HDEHP immobilized on the foam was obtained from the analysis of data obtained for the extraction of cerium(III) from acidic perchlorate solutions of constant ionic strength.  相似文献   

6.
The present paper describes a novel type of extractant for actinides called bis (dioctylcarbamoylmethyl) sulfoxide which neither contains phosphorus nor entails the addition of tributyl phosphate as phase modifier for extraction. This extractant, abbreviated as CMSO, has been found to be freely soluble in dodecane and to form no third phase even with concentrations of nitric acid as high as 10M. The distribution ratios for the extraction of Am(III), Pu(IV) and U(VI) at trace levels have been found to be 13, 220 and 11, respectively, from 5M nitric acid using 0.2M CMSO in dodecane and those for back-extraction have been found to be 2×10–4, 8×10–3 and 5×10–2 using 0.01M nitric acid, 0.1M oxalic acid and 0.35M sodium carbonate, respectively. Similar distribution ratios were obtained with the recycled extractant. Extraction was found to be very rapid. Eu(III) and Sr(II) were found to be moderately extracted with distribution ratios of 2 and 0.77, respectively, while the extraction of Cs(I) was negligible (KD=0.005).  相似文献   

7.
The142/140Ce unit separation factors (q) for cerium(III)-cerium(IV) exchange reaction in an extraction system containing Ce(IV) in tri-n-butyl phosphate (TBP) or di(2-ethylhexyl) phosphoric acid (HDEHP) and Ce(III) in nitric acid were determined. The value of q was found to be 1.00054±0.00012 (2) in 6M HNO3/TBP and 1.00078±0.00028 in 6M HNO3/HDEHP extraction systems. The dehydration and complex formation processes and their contribution to reduced partition function ratios (RPFR's) are discussed.  相似文献   

8.
A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92–98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(C2O4)2·6H2O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuO2 obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen.  相似文献   

9.
Octylphenyl acid phosphate, the commercially available mixture of monooctylphenylphosphoric acid (MOPPA) and dioctylphenylphosphoric acid (DOPPA) in xylene medium has been employed as an extractant for distribution studies on Pu(IV) in different mineral acids including phosphoric acid. It was found possible to extract Pu quantitatively from an acid mixture comprising 2.5M H3PO4, 0.75M H2SO4 and 0.5M HNO3. Quantitative stripping was observed with a mixture of 0.25M oxalic acid and 0.2M ammonium oxalate.Parts of this work have been reported at symposie (Refs1,2)  相似文献   

10.
The formation of ternary complexes between lanthanide ions [Nd(III) or Eu(III)], octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO), and bis-(2-ethylhexyl)phosphoric acid (HDEHP) was probed by liquid–liquid extraction and spectroscopic techniques. Equilibrium modeling of data for the extraction of Nd(III) or Eu(III) from lactic acid media into n-dodecane solutions of CMPO and HDEHP indicates the predominant extracted species are of the type [Ln(AHA)2(A)] and [Ln(CMPO)(AHA)2(A)], where Ln?=?Nd or Eu and A represents the DEHP? anion. FTIR (for both Eu and Nd) and visible spectrophotometry (in the case of Nd) indicate the formation of the [Ln(CMPO)(A)3] complexes when CMPO is added to n-dodecane solutions of the LnA3 compounds. Both techniques indicate a stronger propensity of CMPO to complex Nd(III) versus Eu(III).  相似文献   

11.
Europium(III) was extracted by bis(2-ethylhexyl)phosphoric acid (HDEHP) and 8-hydroxyquinoline (HQ) in dodecane from aqueous perchlorate media of constant ionic strength (0.1M; H+, NaClO4). Slope analysis of the data indicate that three molecules of HDEHP or HQ are attached to Eu3+. Extraction constants were obtained at different temperatures. The data were used to calculate the thermodynamic parameters (G, H and S) for the extraction process in the two systems. When using mixtures of crown ethers with HDEHP no synergism was observed.  相似文献   

12.
Radiation effects on the extraction of Am(III) with di (2-ethylhexyl) phosphoric acid (DEHPA) was studied by exposing DEHPA to gamma rays under various conditions. Gamma irradiation of undiluted DEHPA causes an enhancement of extraction of Am(III) due to the formation of mono (2-ethylhexyl) phosphoric acid (MEHPA) similarly to that of Nd(III). The presence of diluent during irradiation brought about a slight difference from the results in the absence of a diluent. The marked change occurred in Df when the organic solvent was exposed to γ-ray while being mixed with nitric acid solution. An initial slight increase of Df for Am(III) and Nd(III) was followed by a subsequent decrease beyond an absorbed dose of approximately 200 Wh·1−1. This phenomenon was explained by the enhanced decomposition of DEHPA and the subsequent strong hydrolytic and radiolytic decomposition of MEHPA to H3PO4 in the aqueous phase, and the complex forming nature of H3PO4 with Am(III) and Nd(III).  相似文献   

13.
A simple solvent extraction procedure for the efficient separation of the radioactive tracers95Nb and182Ta from each other in a mixture using di-(2-ethylhexyl)phosphoric acid (HDEHP) as extractant is described. Tantalum was found to be quantitatively extracted from an aqueous madium, which is 1.6N in HCl and 10?2 M in oxalic acid, with a HDEHP solution of 0.1 M concentration. Extractabilities of both niobium and tantalum in mineral acids like HCl, H2SO4 and HNO3 and in some organic acids like oxalic, citric, etc., in HDEHP under the experimental conditions were also studied. The reliability of the separation procedure was verified further by γ-ray spectrometry.  相似文献   

14.

N,N,N′,N′-tetraoctyl diglycolamide (TODGA) and bis(2-ethylhexy)phosphoric acid (HDEHP) were coated on Fe3O4 nanoparticles under different chemical conditions. The TODGA-coated magnetite nanoparticles (Fe3O4@TODGA) captured representative actinides Am(III) and Pu(IV) at 3–4 M HNO3 with high efficiency. However, the HNO3 induced pre-organization of TODGA, before coating on the magnetite nanoparticles, was found to be important for the sorption of Am(III) and Pu(IV) ions. The Fe3O4@HDEHP particles exhibited selectivity toward Pu(IV), and Am(III) did not sorb from 3 to 4 M HNO3. The quantification of Pu(IV) preconcentrated on coated particles was carried out by removing the extractant coating in dioxane based scintillator, followed by liquid scintillation counting.

  相似文献   

15.
Effective separation of the congeneric pair of elements, zirconium and hafnium and also niobium which was in admixtures with zirconium as daughter in its isotopic form were achieved through reversed phase column and paper extraction chromatographic procedures using di-(2-ethylhexyl)phosphoric acid (HDEHP) as the liquid exchanger. In reversed phase column chromatographic separation, the tracers,95Zr,95Nb and175,181Hf, were extracted by HDEHP impregnated on kieselguhr and were sequentially eluted with 6N H2SO4+xN oxalic acid+H2O2(where x=0.1, 0.5 and 2). Similarly, in reversed phase paper chromatographic study in which a coating of HDEHP on Whatman No. 1 chromatographic paper was used as stationary phase, the mobile phase, 18N H2SO4+0.1N oxalic acid + H2O2, helped in separating the elements with favorable separation factors. Under the optimal conditions, the separation and decontamination of the elements in both methods were found to be quantitative, as verified by -spectrometric studies.  相似文献   

16.
A solvent extraction procedure for the separation of niobium and tantalum has been developed. The method consists of extracting tantalum from its aqueous mixture with niobium, with the help of di(2-ethylhexyl)phosphoric acid (HDEHP) in n-heptane. The aqueous feed consists of niobium and tantalum in an aqueous medium containing hydrochloric and oxalic acids. The concentrations of niobium and tantalum were raised to 1 mg/ml in the aqueous solution. The extraction efficiency of tantalum under these conditions was found to be 85%. Effects of chloride and oxalate ions as well as those of the concentration of HDEHP on the extraction efficiency were studied and discussed in detail.  相似文献   

17.
Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO3/HCl (0.5–2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO3/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO3 and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01–0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M–1M HNO3/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant.  相似文献   

18.
Solvent extraction of U(VI) with di-isodecyl phosphoric acid (DIDPA)/dodecane from nitric acid medium has been investigated for a wide range of experimental conditions. Effect of various parameters including nitric acid concentration, DIDPA concentration, temperature, stripping agents, and other impurities like rear earths, transition metal ion, boron, aluminum ion on U(VI) extraction has been studied. The species extracted in the organic phase is found to be UO2(NO3)(HA2)·H2A2 at lower acidity (<3.0 M HNO3). Increase in temperature lead to the decrease in extraction with the enthalpy change by ∆H = −16.27 kJ/mol. Enhancement in extraction of U(VI) from nitric acid medium was observed with the mixture of DIDPA and tri butyl phosphate (TBP). The stripping of U(VI) from organic phase (DIDPA–U(VI)/dodecane) with various reagents followed the order: 4 M H2SO4 > 5% (NH4)2CO3 > 8 M HCl > 8 M HNO3 > Water. High separation factors between U(VI) and impurities suggested that the use of DIDPA for purification of uranium from multi elements bearing solution.  相似文献   

19.
A fused silica fibre coated with poly(dimethylsiloxane) was modified to produce a micro probe with ion exchanging capability. The liquid ion exchanger, di-(2-ethylhexyl)phosphoric acid (HDEHP), was used for the modification. The probe was used for the extraction of bismuth(III) from aqueous nitric acid solution. The extracted Bi(III) was desorbed into an acidic potassium iodide solution. The yellow colored BiI4 complex formed was determined by spectrophotometry.  相似文献   

20.
Extraction behavior of Th(IV) and U(VI) has been investigated with bis(2-ethylhexyl) phosphinic acid (PIA-8) and bis(2-ethylhexyl) phosphoric acid (HDEHP) from nitric acid media in toluene. The optimum conditions for extraction of these metals have been established by studying various parameters like acid concentration, pH, reagent concentration, diluents and shaking time. The extraction of Th(IV) was found to be quantitative with 0.3-2.5M HNO3 by 2.5.10-2M HDEHP and in the pH range 0.1-2.5 with 2.3.10-2M PIA-8 in toluene. U(VI) was completely extracted in the acidic range of 0.1-2.0M HNO3 with 2.2.10-2M HDEHP and in the pH range of 1.0-3.0 with 2.0.10-2M PIA-8 in toluene. The probable extracted species have been ascertained by log D-log c plot as UO2 R2 .2HR with both the reagents and Th (NO3)2R2 .2HR with PIA-8 and Th (NO3)3R.3HR with HDEHP, respectively. Temperature dependence of the extraction equilibrium is examined by the temperature variation method. Separation of U(VI) and Th(IV) was also carried out from commonly associated metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号