首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let Ω be a finite set with k elements and for each integer n ≧ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωn = {(a1, a2,…, an) | (a1, a2,…, an) ∈ Ωn and ajaj+1 for some 1 ≦ jn ? 1}. Let {Ym} be a sequence of independent and identically distributed random variables such that P(Y1 = a) = k?1 for all a in Ω. In this paper, we obtain some very surprising and interesting results about the first occurrence of elements in Ωn and in Ω?n with respect to the stochastic process {Ym}. The results here provide us with a better and deeper understanding of the fair coin-tossing (k-sided) process.  相似文献   

2.
For fixed p (0 ≤ p ≤ 1), let {L0, R0} = {0, 1} and X1 be a uniform random variable over {L0, R0}. With probability p let {L1, R1} = {L0, X1} or = {X1, R0} according as X112(L0 + R0) or < 12(L0 + R0); with probability 1 ? p let {L1, R1} = {X1, R0} or = {L0, X1} according as X112(L0 + R0) or < 12(L0 + R0), and let X2 be a uniform random variable over {L1, R1}. For n ≥ 2, with probability p let {Ln, Rn} = {Ln ? 1, Xn} or = {Xn, Rn ? 1} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), with probability 1 ? p let {Ln, Rn} = {Xn, Rn ? 1} or = {Ln ? 1, Xn} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), and let Xn + 1 be a uniform random variable over {Ln, Rn}. By this iterated procedure, a random sequence {Xn}n ≥ 1 is constructed, and it is easy to see that Xn converges to a random variable Yp (say) almost surely as n → ∞. Then what is the distribution of Yp? It is shown that the Beta, (2, 2) distribution is the distribution of Y1; that is, the probability density function of Y1 is g(y) = 6y(1 ? y) I0,1(y). It is also shown that the distribution of Y0 is not a known distribution but has some interesting properties (convexity and differentiability).  相似文献   

3.
Let Ω = {1, 0} and for each integer n ≥ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωnk = {(a1, a2, …, an)|(a1, a2, … , an) ? Ωnand Σi=1nai = k} for all k = 0,1,…,n. Let {Ym}m≥1 be a sequence of i.i.d. random variables such that P(Y1 = 0) = P(Y1 = 1) = 12. For each A in Ωn, let TA be the first occurrence time of A with respect to the stochastic process {Ym}m≥1. R. Chen and A.Zame (1979, J. Multivariate Anal. 9, 150–157) prove that if n ≥ 3, then for each element A in Ωn, there is an element B in Ωn such that the probability that TB is less than TA is greater than 12. This result is sharpened as follows: (I) for n ≥ 4 and 1 ≤ kn ? 1, each element A in Ωnk, there is an element B also in Ωnk such that the probability that TB is less than TA is greater than 12; (II) for n ≥ 4 and 1 ≤ kn ? 1, each element A = (a1, a2,…,an) in Ωnk, there is an element C also in Ωnk such that the probability that TA is less than TC is greater than 12 if n ≠ 2m or n = 2m but ai = ai + 1 for some 1 ≤ in?1. These new results provide us with a better and deeper understanding of the fair coin tossing process.  相似文献   

4.
{Xn,n?1} are i.i.d. random variables with continuous d.f. F(x). Xj is a record value of this sequence if Xj>max{X1,…,Xj?1}. Consider the sequence of such record values {XLn,n?1}. Set R(x)=-log(1?F(x)). There exist Bn > 0 such that XLnBn→1. in probability (i.p.) iff XLnR-1(n)→1 i.p. iff {R(kx)?R(x)}R12(kx) → ∞ as x→∞ for all k>1. Similar criteria hold for the existence of constants An such that XLn?An → 0 i.p. Limiting record value distributions are of the form N(-log(-logG(x))) where G(·) is an extreme value distribution and N(·) is the standard normal distribution. Domain of attraction criteria for each of the three types of limit laws can be derived by appealing to a duality theorem relating the limiting record value distributions to the extreme value distributions. Repeated use is made of the following lemma: If P{Xn?x}=1?e-x,x?0, then XLn=Y0+…+Yn where the Yj's are i.i.d. and P{Yj?x}=1?e-x.  相似文献   

5.
Let G be a group and g1,…, gt a set of generators. There are approximately (2t ? 1)n reduced words in g1,…, gt, of length ?n. Let \?ggn be the number of those which represent 1G. We show that γ = limn → ∞(\?ggn)1n exists. Clearly 1 ? γ ? 2t ? 1. η = (log γ)(log(2t ? 1)) is the cogrowth. 0 ? η ? 1. In fact η ∈ {0} ∪ (12, 1¦. The entropic dimension of G is shown to be 1 ? η. It is then proved that d(G) = 1 if and only if G is free on g1,…, gt and d(G) = 0 if and only if G is amenable.  相似文献   

6.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

7.
The note contains some conditions on a graph implying that the edge connectivity is equal to the minimum degree. One of these conditions is that if d1?d2???dn is the degree sequence then ∑ll?1(d1+dn?1)>In?1 for 1 ? l? min {n2?1, dn}.  相似文献   

8.
Let {Xn} be a ?-irreducible Markov chain on an arbitrary space. Sufficient conditions are given under which the chain is ergodic or recurrent. These extend known results for chains on a countable state space. In particular, it is shown that if the space is a normed topological space, then under some continuity conditions on the transition probabilities of {Xn} the conditions for ergodicity will be met if there is a compact set K and an ? > 0 such that E {6Xn+16 — 6Xn6 ∣ Xn = x} ? ?? whenever x lies outside K and E{6Xn+16 ∣ Xn=x} is bounded, xK; whilst the conditions for recurrence will be met if there exists a compact K with E {6Xn+16 ? 6Xn6 ∣ Xn = x} ? 0 for all x outside K. An application to queueing theory is given.  相似文献   

9.
Given a polynomial P(X1,…,XN)∈R[X], we calculate a subspace Gp of the linear space 〈X〉 generated by the indeterminates which is minimal with respect to the property P∈R[Gp] (the algebra generated by Gp, and prove its uniqueness. Furthermore, we use this result to characterize the pairs (P,Q) of polynomials P(X1,…,Xn) and Q(X1,…,Xn) for which there exists an isomorphism T:X〉 →〈X〉 that “separates P from Q,” i.e., such that for some k(1<k<n) we can write P and Q as P1(Y1,…,Yk) and Q1(Yk+1,…,Yn) respectively, where Y=TX.  相似文献   

10.
The Fréchet distance between two multivariate normal distributions having means μX, μY and covariance matrices ΣX, ΣY is shown to be given by d2 = |μX ? μY|2 + trX + ΣY ? 2(ΣXΣY)12). The quantity d0 given by d02 = trX + ΣY ? 2(ΣXΣY)12) is a natural metric on the space of real covariance matrices of given order.  相似文献   

11.
Let X1, X2, X3, … be i.i.d. r.v. with E|X1| < ∞, E X1 = μ. Given a realization X = (X1,X2,…) and integers n and m, construct Yn,i, i = 1, 2, …, m as i.i.d. r.v. with conditional distribution P1(Yn,i = Xj) = 1n for 1 ? j ? n. (P1 denotes conditional distribution given X). Conditions relating the growth rate of m with n and the moments of X1 are given to ensure the almost sure convergence of (1mmi=1 Yn,i toμ. This equation is of some relevance in the theory of Bootstrap as developed by Efron (1979) and Bickel and Freedman (1981).  相似文献   

12.
For (x,y,t)∈Rn × Rn × R, denote Xj = ??xj + 2yj??t, yj = ??yj ? 2xj??t and Lα=?14j=1nXj2 + Yj2 + ??t. When α = n ? 2q, La represents the action of the Kohn Laplacian □b on q-forms on the Heisenberg group. For ?n < α < n, we construct a parametrix for the Dirichlet problem in smooth domains D near non-characteristic points of ?D. A point w of ?D is non-characteristic if one of X1,…, Xn, Y1,…, Yn is transverse to ?D at w. This yields sharp local estimates in the Dirichlet problem in the appropriate non-isotropic Lipschitz classes. The main new tool is a “convolution calculus” of pseudo-differential operators that can be applied to the relevant layer potentials, for which the usual asymptotic composition formula is false. Characteristic points are treated in Part II.  相似文献   

13.
A set {b1,b2,…,bi} ? {1,2,…,N} is said to be a difference intersector set if {a1,a2,…,as} ? {1,2,…,N}, j > ?N imply the solvability of the equation ax ? ay = b′; the notion of sum intersector set is defined similarly. The authors prove two general theorems saying that if a set {b1,b2,…,bi} is well distributed simultaneously among and within all residue classes of small moduli then it must be both difference and sum intersector set. They apply these theorems to investigate the solvability of the equations (ax ? ayp = + 1, (au ? avp) = ? 1, (ar + asp) = + 1, (at + azp) = ? 1 (where (ap) denotes the Legendre symbol) and to show that “almost all” sets form both difference and sum intersector sets.  相似文献   

14.
A new normal form of Boolean functions based on the sum (mod 2), product and negation is presented. Let n = {1, 2,…, n}, let As be the family of s-element subsets of a set A and let πa?φxa = 1. Then every Boolean function ?(x1,x2,…,xn) has a normal form
?(x1,x2,…,xn=s=0nΠA∈ns1⊕dAΠa∈Axa
with unique coefficients dA? {0, 1}. A transformation of Galois normal form into the present normal form is also shown.  相似文献   

15.
For a finite group G and a set I ? {1, 2,…, n} let
G(n,I) = ∑g ∈ G ε1(g)?ε2(g)???εn(g)
,where
εi(g)=g if i=∈ I,
εl(g)=l if i=∈ I.
We prove, among other results, that the positive integers
tr (eG(n,I1)+?+eG(n,Ir))k:n,r,k,?1, Ij?{1,…,n}, 1?|ij|?3
for 1 ? j ? r, Ij1Ij2Ij3Ij4 = Ø for any 1 ? j1 <j2 <j3 <j4 ? r, determine G up to isomorphism. We also show that under certain assumptions finite groups are determined up to isomorphism by the number of their subgroups.  相似文献   

16.
We determine the maximum size of a family of subsets in {1, 2,…, n} with the property that if A1, A2, A3,… are any members of the family with ∩Ai = ?, then ∪Ai = {1, 2,…, n}.  相似文献   

17.
Let {aj}and {adj} be two binary maximal length linear sequences of period 2n?1. The cross-correlation function is defined as Cd(t) = j=02n?2(?1)aj=1?adj for t = 0, 1,…, 2n ? 2. We find the values and the number of occurrences of each value of Cd(t) when d = 2n2 ? 2n4 + 1, n ≡ 0 (mod 8).  相似文献   

18.
We prove a number of results concerning isomorphisms between spaces of the type Lp(X), where X is a separable p-Banach space and 0 < p < 1. Our results imply that the quotient of Lp([0, 1] × [0, 1]) by the subspace of functions depending only on the first variable is not isomorphic to Lp, answering a question of N. T. Peck. More generally if B0 is a sub-σ-algebra of the Borel sets of [0, 1], then Lp([0, 1])Lp([0, 1], B0) is isomorphic to Lp if and only if Lp([0, 1], B0) is complemented. We also show that Lp has, up to isomorphism, at most one complemented subspace non-isomorphic to Lp and classify completely those spaces X for which Lp(X) ? Lp. In particular if L(Lp, X) = {0} and Lp(X) ? Lp then X ? lp or is finite-dimensional. If X has trivial dual and Lp(X) ? Lpthen X ? Lp.  相似文献   

19.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

20.
We study homogeneous chains of infinite order (ξt)tZ with the set of states taken to be X=(N\{0,1})x{-1,1}. Our approach is to interpret the half-infinite sequence ..., ξ?n,..., ξ?1, ξ0, where ξt=(it, εt) ∈ X, t ∈ Z as the continued fraction to the nearer integer expansion (read inversely) of a y ? [?12,12]. Thus, we are led to study certain Y-valued Markov chains, where Y = [?12, 12] and then by making use of their properties we establish the existence of denumerable chains of infinite order under conditions different from those given in Theorem 2.3.8 of Iosifescu-Theodorescu (1969). A (weak) variant of mixing is proved as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号